期刊文献+

基于SOR-LS-SVM算法的公交站点客流量预测研究

Passenger Volume Forecasting in Bus Stop Based on SOR-LS-SVM
在线阅读 下载PDF
导出
摘要 公交站点客流量情况的及时准确预测对提供更可靠的公交服务和节省公交公司的运营成本是非常重要.首先对标准的LS-SVM算法进行了改进,得到一种新的SOR-LS-SVM学习算法.该算法不仅能减少计算的复杂性,提高学习速度;同时能提高函数估计的精确度.然后利用SOR-LS-SVM算法对公交站点的客流量情况进行预测和模拟.实验结果表明改进的SOR-LS-SVM算法具有较高的预测精度,且实验取得了较好效果. Timely and accurately forecasting passenger volume in bus stops is important for transit operation and it can provide more reliable bus services and save operating costs. Based on the traditional least squares support vector machine(LS-SVM), the improved algorithm of successive overrelaxation for Least squares support vector machine(SOR-LS-SVM) is presented. This methods can reduce compute complex and increase learning speed. At the same time, the new algorithm can improve accuracy of estimation. At last, the SOR-LS-SVM algorithm is applied to forecast passenger volume in bus stops. Experiment resut shows better effect and higher precision of forecasting by the SOR-LS-SVM algorithm.
作者 张朝元 陈丽
出处 《湖南工程学院学报(自然科学版)》 2009年第4期68-71,共4页 Journal of Hunan Institute of Engineering(Natural Science Edition)
基金 大理学院科研基金资助项目(2005X23)
关键词 LS-SVM法 SOR-LS-SVM算法 公交站点 客流量 预测 Ls-SVM SOR-LS-SVM algorithm bus stop passenger volume forcaot
  • 相关文献

参考文献7

二级参考文献42

  • 1Vapnik V N. Statistical learning theory[M]. New York, 1998.
  • 2Scholkoph B, Smola A J, Bartlett P L. New support vectoral gorithms[J]. Neural Computation, 2000, 12:1207-1245.
  • 3Suykens J A K, Branbanter J K, Lukas L, et al. Weighted least squares support vector machines: robustness and spare approximation [J]. Neurocomputing, 2002, 48(1): 85-105.
  • 4Lin C-F, Wang S-D. Fuzzy support vector machines[J]. IEEE Trans on Neural Networks, 2002, 13(2): 464-471.
  • 5Tay F E H, Cao L J. Modified support vector machines in financial time series forecasting[J]. Neurocomputing, 2002, 48: 847-861.
  • 6Tay F E H, Cao L J. ε-Descending support vector machines for financial time series forecasting[J]. Neural Processing Letters, 2002, 15(2): 179-195.
  • 7Keoman V, Hadzic I. Support vectors selection by linear programming[A]. Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks[J. Como, Italy, 2000, 5: 193-198.
  • 8Osuna E, Freund R, Girosi F. An improved training algorithm for support vector machine[A]. Proc the 1997 IEEE workshop on neural networks for signal processing[C]. Amelea Island, FL, 1997, 276-285.
  • 9Laskov P. Feasible direction decomposition algorithms for training support vector machines[J]. Machine Learning, 2002, 46(1): 315-349.
  • 10Collobert R. SVMTorch: support vector machines for large-scale regression problems[J]. Journal of Machine Learning Research, 2001, 1: 143-160.

共引文献200

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部