期刊文献+

对基于决策论的数字信号调制识别方法的改进 被引量:21

Improved method of digital signals modulation identification based on decision theory
在线阅读 下载PDF
导出
摘要 从特征参数提取的角度对基于决策论的数字信号调制识别算法进行改进,提取五个相对简单的瞬时信息特征参数,并利用决策树方法对信号进行调制识别。改进后的算法除了识别2ask、2fsk、2psk、4ask、4fsk和4psk六种典型数字信号外,还可识别16qam,若进一步增加参数(递归零中心归一化瞬时相位绝对值的平均值),又可识别8psk。实验结果表明:改进算法的复杂度明显降低,且信号识别正确率及适用信噪比范围都有很大程度的提高。 An improved method of digital signals modulation identification based on decision theory was proposed in this paper. The method can be used to carry out modulation identification by extracting five simple instantaneous characteristic parameters of digital signals and decision-tree. Besides the six typical digital signals i. e. 2ask, 2fsk, 2psk, 4ask, 4fsk and 4psk, 16qam can be identified by the improved method. Moreover, if the parameter which was the mean absolute value of reeursive zero-center normalization instantaneous phase was extracted, 8psk can also be identified by this method. The experimental result shows that the complexity of the improved method is reduced greatly. Furthermore, the correct recognition rate and the range of SNR are also increased significantly.
作者 张达敏 王旭
出处 《计算机应用》 CSCD 北大核心 2009年第12期3227-3230,共4页 journal of Computer Applications
基金 贵州省教育厅自然科学基金资助项目(黔科教〔2007〕321号)
关键词 特征提取 调制识别 决策论 识别正确率 信噪比 feature extraction modulation identification decision theory recognition rate Signal to Noise Rate (SNR)
  • 相关文献

参考文献11

  • 1NANDI A K, AZZOUZ E E. Algorithms for automatic modulation recognition of communication signals [J]. IEEE Transactions on Communication, 1998, 46(4): 431-436.
  • 2BOUDREAU D , DUBUC C , PATENAUDE F . A fast automatic modulation recognition algorithm and its implementation in a spectrum monitoring application [C]// MILCOM 2000: 21st Century Military Communications Conference Proceedings. Washington, DC: IEEE, 2000, 2:732 -736.
  • 3GARDNER W A. Spectral correlation of modulated signals: PART Ⅰ - Analog modulation [J]. IEEE Transactions on Communications,1987, 35(6): 584 -594.
  • 4GARDNER W A. Spectral correlation of modulated signals: PART Ⅱ- Digital modulation [J]. IEEE Transactions on Communication, 1987, 35(6): 595-601.
  • 5KETYERER H, JONDRAL F, COSTA A H. Classification of modulation modes using time-frequency methods [ EB/OL]. [ 2009 - 04 - 10]. http://www. umassd. edu/engineering/ece/people/faculty/ acosta/icassp99. pdf.
  • 6HO K C, PROKOPIW W, CHAN Y T. Modulation identification of digital signals by the wavelet transform [J]. IEEE Transactions on Signal Processing, 2000, 147(4) : 169 - 176.
  • 7LIEDTKE F F. Computer simulation of an automatic classification procedure for digitally modulated communication signals with unknown parameters [J]. Signal Processing, 1984, 6(4) : 311 - 323.
  • 8MOBASSERI B G. Digital modulation classification using constellation shape [J]. Signal Processing, 2000, 80(2): 251 -277.
  • 9POLYDOROS A, KIM K. On the detection and classification of quadrature digital modulations in broad-band noise [ J]. IEEE Transactions on Communications, 1990, 38(8) : 1199 - 1211.
  • 10SWAMI A, SADLER B M. Hierarchical digital modulation classification using cumulants [ J]. IEEE Transactions on Communications, 2000, 48(3): 416-429.

同被引文献127

引证文献21

二级引证文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部