期刊文献+

云计算后台大规模数据处理技术探讨 被引量:9

Studies on the Large Scale Data Processing Technologies Used in Servers for Cloud Computing
在线阅读 下载PDF
导出
摘要 云计算的后台处理技术是云计算系统的总体保障。本文主要介绍当前云计算中的后台大规模数据处理技术。大规模数据处理技术对于云计算的后台数据收集与整理起着关键的作用。在云计算中的大规模数据处理技术主要解决三个问题,即可靠性,可扩展性以及易编程性。本文结合Google的MapReduce编程方式,以及微软的Dryad编程方式,着重介绍在实践中,如何达到上述的目标。 Data processing technologies used in servers are the critical foundations for the cloud computing systems. This paper introduces the large scale data processing technologies used in the current cloud computing implementations. Such technologies are quite important for the data collections as well as processing. There are three key goals for processing the large scale data i.e. reliability, scalability and easy to program. Based on the Map Reduce programming paradigm from Google and Dryad model from Microsoft, how to achieve the goals in practice are discussed in detail.
作者 陈康
出处 《电信工程技术与标准化》 2009年第11期12-16,共5页 Telecom Engineering Technics and Standardization
基金 国家重点基础研究发展计划(973计划)(2007CB310900) 国家自然科学基金(NSFC90718040) 国家高技术研究发展(863)计划(2008AA01Z112)
关键词 云计算 分布式系统 数据处理 编程模式 cloud computing, distributed system, data processing, programming model
  • 相关文献

参考文献10

  • 1Isard M,Budiu M,Yu Y,et al.Dryad:distributed data-parallel programs rom sequential building blocks[].Proceedings of therd European Conference on Computer Systems (EuroSys).2007
  • 2Yu Y,Isard M,Fetterly D,et al.DryadLINQ:a system for general-purpose distributed data-parallel computing using a high-level language[].Symposium on Operating System Design and Implementation (OSDI).2008
  • 3Yu Y,Gunda P K,Isard M.Distributed aggregation for data-parallel computing:Interfaces and Implementations[].ACM Symposium on Operating Systems Principles (SOSP).2009
  • 4IBM introduces ready-to-use cloud computing collaboration services get clients started with cloud computing. http://www-03.ibm.com/press/us/en/pressrelease/22613.wss .
  • 5Boss G,Malladi P,Quan D,et al.IBM White Paper:Cloud Computing[]..
  • 6Dean J,Ghemawat S.MapReduce:simplified data processing on large clusters[].Proceedings ofth Symposium on Operating System Design and Implementation.2004
  • 7Burrows M.The chubby lock service for loosely-coupled distributed systems[].Proceedings ofth USENIX Symposium on Operating Systems Design and Implementation.2006
  • 8Luiz Andre Barroso,Jeffrey Dean,Urs Holzle.Web Search for a Planet: The google Cluster Architecture[].IEEE Micro Magazine.2003
  • 9Brin S,Page L.The anatomy of a large-scale hypertextual web search engine[].Computer Networks.1998
  • 10S Ghemawat,H Gobioff,S T Leung.The Google file system[].Proceedings of the th ACM Symposium on Operating Systems Principles (SOSP’).2003

同被引文献60

  • 1章德斌,张忠平.Oracle数据库性能优化方法[J].福建电脑,2004,20(10):75-76. 被引量:1
  • 2林利,蔡明杰.可信计算的研究及存在的问题[J].电脑与信息技术,2005,13(3):44-47. 被引量:2
  • 3王新成.可信计算与系统安全芯片[J].计算机安全,2005(10):2-6. 被引量:5
  • 4郝艳芳,廉永健.JSP Web应用性能优化的探讨[J].机电产品开发与创新,2006,19(4):110-112. 被引量:3
  • 5罗谦,舒辉,曾颖.二进制文件结构化比较的并行算法实现[J].计算机应用,2007,27(5):1260-1263. 被引量:4
  • 6刘鹏.中国云计算[EB/OL].(2009-04-03)[2011-03-01].http://www.cnw.130111.cm/server-eloud/htm2009/20090403-171367.shtml.
  • 7Armbrust M,Fox A,Griffith R,etc.A view of cloud computing[J].Communication of the ACM,2010,53(4):50-58.
  • 8Rodrigo N,Calheiros,Rajiv Ranjan,Anton Beloglazov,etc.CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms [J].Software-Practice & Experience,2011,41 (1):23-50.
  • 9Mark Stillwell,David Schanzenbach,Frederic Vivien,etc.Resource allocation algorithms for virtualized service hosting platforms[J].Journal of Parallel and Distributed Computing,2010,70(9):962-974.
  • 10Daniel Warneke,Odej Kao.Exploiting Dynamic Resource Allocation for Efficient Parallel Data Processing in the Cloud[J].IEEE Transactions on Parallel and Distributed Systems,2011,22(6): 1045 -9219.

引证文献9

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部