期刊文献+

鲁棒贝叶斯混合分布的模型选择 被引量:1

Model selection for robust Bayesian mixture distributions
在线阅读 下载PDF
导出
摘要 提出一种基于偏差信息准则(deriance information criterion,DIC)的鲁棒贝叶斯混合分布模型选择算法.在变分逼近框架下,给出鲁棒贝叶斯混合模型的DIC计算公式;设计的模型选择算法能同时学习模型参数推断和进行模型选择,避免在大的候选模型集中根据模型选择准则选取最优模型.给出试验参数初始值设置方法,在含有较多离群点的仿真数据和Old Faithful Geyser数据上的试验结果表明了好的性能:得到鲁棒的混合分量参数和较准确的混合分量个数. Bayesian approaches to robust mixture modelling based on Student-t distributions enable to be less sensitive to outliers, thereby preventing from over-estimating of the number of mixting components. However, there are two intractable problems in the previous methods for model selection under the variational Bayesian framework:(1) The variational approach converges to a local maximum of the low bound on the log-evidence that dependents on the initial parameter values. How can the variational approach guarantee that the initial settings for different models are consistency? (2) The low bound is sensitive to factorized approximation forms in the inference process. How can the variational approach guarantee that the approximate errors for different models are equivalent? In this paper, we present a model selection algorithm for robust bayesian mixture distributions based on deviance information criterion(D/C) proposed by Spiegelhalter et al. in 2002. Unlike the Bayesian Infromation Criterion (BIC), the DIC is straightforward in calculation, which has been adopted in many modern applications. Inspired by the works of MeGrory et al. , which used the DIC values for model selection tasks of finite mixture Gaussian distributions and hidden Markov models, the calculation of a DIC for robust Bayesian mixture model is derived. The proposed algorithm can learn model parameters and perform model selection simultaneously, which avoids choosing an optimum one among a large set of candidate models. A method to initialize parameters of the algorithm is provided. Experimental results on simulated data and Old Faithful Geyser data containing a large amount of outliers show the good performance that the algorithm can learn parameters of mixture components robustly and the number of components precisely.
出处 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第5期689-698,共10页 Journal of Nanjing University(Natural Science)
基金 国家自然科学基金(60674089) 上海市重点学科基金(B504)
关键词 混合模型 变分学习 偏差信息准则 模型选择 mixture model, variational learning, deviance information criterion, model selection, robust
  • 相关文献

参考文献22

二级参考文献74

  • 1赵鹏,耿焕同,王清毅,蔡庆生.基于聚类和分类的个性化文章自动推荐系统的研究[J].南京大学学报(自然科学版),2006,42(5):512-518. 被引量:13
  • 2章毓晋.图像工程(上册)图像处理和分析[M].北京:清华大学出版社,1999.181-186.
  • 3Young K H, et al. Pitch Detection with Average Magnitude Difference Function Using Adaptive Threshold Algorithm for Estimating Shimmer and Jitter. In: Proc of the 20th IEEE International Annual Conference on Engineering in Medicine and Biology Society. Hong Kong, China, 1998, Ⅵ:3162-3164.
  • 4Wang Y R, Wong I J, Tsao T C. A Statistical Pitch Detection Algorithm. In.. Proc of the IEEE International Conference on Acoustics, Speech, and Signal Processing. Orlando, USA,2002,Ⅰ:13--17.
  • 5Hung W W, Wang H C. On the Use of Weighted Filter Bank Analysis for the Derivation of Robust MFCCs. IEEE Signal Processing Letters, 2001, 8(3):70--73.
  • 6Molau S, Pitz M, Schluter R, Ney H. Computing Mel-Frequency Cepstral Coefficients on the Power Spectrum. In: Proc of the IEEE International Conference on Acoustics, Speech, and Signal Processing. Salt Lake City, USA, 2001, Ⅰ: 73--76.
  • 7Reynolds D A, Rose R C. Robust Text-Independent Speaker Ⅰ-dentification Using Gaussian Mixture Speaker Models. IEEE Trans on Speech and Audio Processing, 1995, 3(1): 72--83.
  • 8Noda H, Kawaguchi E. Adaptive Speaker Identification Using Sequential Probability Ratio Test. In.. Proc of the 15th International Conference on Pattern Recognition. Barcelona, Spain,2000,Ⅲ: 3266--3269.
  • 9Rabiner L, Juang B H. Fundamentals of Speech Recognition.Englewood Cliffs, USA: Prentice-Hall, 1993.
  • 10Dempster A.P.,Laird N.M.,Rubin D.B..Maximum-likelihood from incomplete data via the EM algorithm.Journal of the Royal Statistical Society,Series B (Methodological),1977,39(1):1~38

共引文献49

同被引文献16

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部