Weyl and Lidskiǐ Inequalities for General Hyperbolic Polynomials
Weyl and Lidskiǐ Inequalities for General Hyperbolic Polynomials
摘要
The roots of hyperbolic polynomials satisfy the linear inequalities that were previously established for the eigenvalues of Hermitian matrices,after a conjecture by A.Horn.Among them are the so-called Weyl and Lidskiǐ inequalities.An elementary proof of the latter for hyperbolic polynomials is given.This proof follows an idea from H.Weinberger and is free from representation theory and Schubert calculus arguments,as well as from hyperbolic partial differential equations theory.
参考文献21
-
1Benzoni-Gavage, S. and Serre, D., Multi-dimensional Hyperbolic Partial Differential Equations: First- Order Systems and Applications, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2007.
-
2Bhatia, R., Linear algebra to quantum cohomology: the story of Alfred Horn's inequalities, Amer. Math. Monthly, 108(4), 2001, 289-318.
-
3Chow, S.-N. and Hale, J. K., Methods of Bifurcation Theory, Grundlehren der Mathematischen Wissenschaften, 251, Springer-Verlag, Heidelberg, 1982.
-
4Fan, K., On a theorem of Weyl concerning eigenvalues of linear transformations, Proc. Nat. Acad. Sci., 35(11), 1949, 652-655.
-
5Fulton, W., Eigenvalues, invaviant factors, highest weights, and Schubert calculus, Bull. Amer. Math. Soc., 37(3), 2000, 209-250.
-
6Garding, L., Linear hyperbolic partial differential equations with constant coefficients, Acta Math., 85(1), 1951, 1-62.
-
7An inequality for hyperbolic polynomials, J. Math. Mech., 8(6), 1959, 957-965.
-
8Harris, J., Algebraic Geometry: A First Course, Springer-Verlag, New York, 1999.
-
9Helton, J. W. and Vinnikov, V., Linear matrix inequality representation of sets, Comm. Pure Appl. Math., 60(5), 2007, 654-674.
-
10Horn, A., Eigenvalues of sums of Hermitian matrices, Pacific J. Math., 12(1): 1962, 225-241.
-
1温瑞萍,任孚鲛.反埃尔米特矩阵的几条性质(英文)[J].太原师范学院学报(自然科学版),2006,5(4):11-13.
-
2杨忠鹏,谭思文.关于“厄米特矩阵乘积的迹及其应用”一文的注记[J].数学的实践与认识,1995,25(2):37-42. 被引量:3
-
3邱润之,王曼英.矩阵迹的若干性质[J].南京邮电学院学报,1994,14(1):83-88. 被引量:2
-
4谢凤繁,殷倩.广义反埃尔米特矩阵的特征[J].湖北科技学院学报,2016,36(12):1-2.
-
5蒋念生.几个重要不等式的矩阵类似[J].万县师专学报(自然科学版),1991,927(2):19-22.
-
6张明善.关于Hermite矩阵的一个特征性质[J].重庆师范学院学报(自然科学版),1996,13(1):71-73. 被引量:6
-
7陈福元.厄米特阵乘积的迹及其应用[J].数学的实践与认识,1993,23(3):65-68. 被引量:6
-
8陶跃钢.关于Hermite矩阵乘积的迹的一个不等式[J].数学通报,1995,34(2):43-44.
-
9徐邦腾.关于两个厄米特矩阵乘积的特征值的估计问题[J].数学的实践与认识,1995,25(2):91-96. 被引量:9
-
10张树青.对“厄米特阵乘积的迹及其应用”一文的注记[J].烟台师范学院学报(自然科学版),1995,11(3):5-7.