期刊文献+

Weyl and Lidskiǐ Inequalities for General Hyperbolic Polynomials

Weyl and Lidskiǐ Inequalities for General Hyperbolic Polynomials
原文传递
导出
摘要 The roots of hyperbolic polynomials satisfy the linear inequalities that were previously established for the eigenvalues of Hermitian matrices,after a conjecture by A.Horn.Among them are the so-called Weyl and Lidskiǐ inequalities.An elementary proof of the latter for hyperbolic polynomials is given.This proof follows an idea from H.Weinberger and is free from representation theory and Schubert calculus arguments,as well as from hyperbolic partial differential equations theory.
作者 Denis SERRE
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2009年第6期785-802,共18页 数学年刊(B辑英文版)
关键词 Hyperbolic polynomials Real roots Eigenvalues of Hermitian matrices 多项式的根 线性不等式 双曲型 偏微分方程理论 埃尔米特矩阵 初等证明 特征值 温伯格
  • 相关文献

参考文献21

  • 1Benzoni-Gavage, S. and Serre, D., Multi-dimensional Hyperbolic Partial Differential Equations: First- Order Systems and Applications, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2007.
  • 2Bhatia, R., Linear algebra to quantum cohomology: the story of Alfred Horn's inequalities, Amer. Math. Monthly, 108(4), 2001, 289-318.
  • 3Chow, S.-N. and Hale, J. K., Methods of Bifurcation Theory, Grundlehren der Mathematischen Wissenschaften, 251, Springer-Verlag, Heidelberg, 1982.
  • 4Fan, K., On a theorem of Weyl concerning eigenvalues of linear transformations, Proc. Nat. Acad. Sci., 35(11), 1949, 652-655.
  • 5Fulton, W., Eigenvalues, invaviant factors, highest weights, and Schubert calculus, Bull. Amer. Math. Soc., 37(3), 2000, 209-250.
  • 6Garding, L., Linear hyperbolic partial differential equations with constant coefficients, Acta Math., 85(1), 1951, 1-62.
  • 7An inequality for hyperbolic polynomials, J. Math. Mech., 8(6), 1959, 957-965.
  • 8Harris, J., Algebraic Geometry: A First Course, Springer-Verlag, New York, 1999.
  • 9Helton, J. W. and Vinnikov, V., Linear matrix inequality representation of sets, Comm. Pure Appl. Math., 60(5), 2007, 654-674.
  • 10Horn, A., Eigenvalues of sums of Hermitian matrices, Pacific J. Math., 12(1): 1962, 225-241.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部