期刊文献+

光学成像灰度级玻耳兹曼熵谱分析与图像分割

Optical imaging gray levels Boltzmann entropy pedigree analysis and image segmentation
在线阅读 下载PDF
导出
摘要 讨论玻耳兹曼关系式的状态数、熵及其常数与光学成像灰度级划分的谱关系.将热力学原理应用于光学成像过程的微观分析,提出实际图像、理想图像及其玻耳兹曼熵谱概念.认为实际图像灰度级处于平衡态,理想图像则是非平衡态的灰度级分布所构成.从平衡态到非平衡态转化是1个非自发过程,需要外部施加作用,利用平衡态和非平衡态之间的熵差分布实现图像分割.实验与分析表明图像分割的实质是在外力作用下实现从实际图像对理想图像的逼近. This paper debates upon pedigree correlation of the microstate number, entropy and constant in Bohzmann equation with the corresponding optical imaging gray levels, applies principle of thermodynamics to microcosmic analysis of optical imaging process, brings forward some concepts of Bohzmann entropy pedigree, reality and ideality images, etc. , and believes that reality image gray levels are in equilibrium state, but ideality image is constituted of non-equilibrium gray levels. The transform from equilibrium to non-equilibrium states is a non-spontaneous process, needing to be given an exterior action. So it makes use of entropy difference distribution between the equilibrium and non-equilibrium states to realize the image segmentation. The experiments and analysis show that the essentials of image segmentation are approach to ideality image from reality image by means of the exterior action.
作者 曹建农 方勇
出处 《南京信息工程大学学报(自然科学版)》 CAS 2009年第2期106-111,共6页 Journal of Nanjing University of Information Science & Technology(Natural Science Edition)
基金 国家863计划(2007AA701510) 博士后科学基金(20080431336) 陕西省自然科学基金(2007D23)
关键词 灰度谱 光学成像 玻耳兹曼熵谱 图像分割 可分解马尔柯夫网 gray levels optical imaging Bohzmann entropy pedigree image segmentation decomposable Markov network
  • 相关文献

参考文献8

二级参考文献60

  • 1张军英,卢志军,石林,董继扬,石美红.基于脉冲耦合神经网络的椒盐噪声图像滤波[J].中国科学(E辑),2004,34(8):882-894. 被引量:19
  • 2杜培军,陈云浩,方涛,唐宏.基于光谱特征的高光谱遥感影像检索[J].光谱学与光谱分析,2005,25(8):1171-1175. 被引量:12
  • 3冯雷,方慧,周伟军,黄敏,何勇.基于多光谱视觉传感技术的油菜氮含量诊断方法研究[J].光谱学与光谱分析,2006,26(9):1749-1752. 被引量:41
  • 4姚庆栋 毕厚杰 等.图像编码基础[M].北京:人民邮电出版社,1984..
  • 5Flerence Tupm,Henri Maitre,Jean-Franceis Mangin et al.,Detection of linear features in SAR images:application to read network extraction:Application to read network extraction[J].IEEE Tcans.on Geascience and Reotate Senstng,1998,36(2):434-453.
  • 6Florence Tupin,Isnbelle Bloch.Henri Maitre.A first step toward antematic interpretation of SAR images using evidential fusion of several structure detectors[J].IEEE Trans.on Geoscience Remote Sensing.1999,37(3):1327-1343.
  • 7Florence Tupin. Markovian methods for SAR image processing[J]. IEEE, 2001, 3: 1164-1166.
  • 8S. Geman, D. Geman. Stochastic relaxation gibbs distribution, and the bayesian restoration of images E J3. IEEE Transon. Pattern Analysis. Machine Intelligence, 1984, PAMI-16: 721-741.
  • 9Y. Xiang, S. K. M. Wong, N. Cercone. A 'Microscopic' study of minimum entropy search in learning decomposable Markov networks[J]. Machine Learning, 1997, 26(1) : 65-92.
  • 10C. K. Chow, C. N. Liu. Approximating discrete probability distributions with dependence trees[J]. IEEE Trans. On Information Theory, 1968, IT-14(3): 462-467.

共引文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部