摘要
S为半群,如果S中的每个Lρ-类都含幂等元,称S为Lρ-富足半群.特别地,如果对任意的a∈S,集合Ia∩Laρ都只含唯一的元素,称S为强Lρ-富足半群.在S上通过一个非恒等置换σ,给出了PI-强Lρ-富足半群的结构定理.
Let S be a semigroup. If each Lρ-class of S contains an idempotent, then S is called a Lρ-abundant semigroups. In particular, if for any α ∈ S, the set Lα^ρ ∩ Iα contains a unique element ap, then S is called a strongly Lρ-abundant semigroup. Via a permutation σ on the S, we get the structure theorem for PI-strongly Lρ-abundant semigroups.
出处
《纯粹数学与应用数学》
CSCD
2009年第3期526-529,共4页
Pure and Applied Mathematics
基金
山东省优秀中青年科学家科研奖励基金(2007BS01018)
关键词
强L~ρ-富足半群
PI-强L~ρ-富足半群
正规带
织积
strongly Lρ-abundant semigroups, PI-strongly Lρ-abundant semigroups, normal band, spined product