期刊文献+

一类带有潜伏期和部分免疫的传染病模型的全局分析 被引量:4

Global Analysis of an Epidemic Model with Latent Period and Partial Immunity
原文传递
导出
摘要 通过假设被接种者具有部分免疫,建立了一类具有潜伏期和接种的SEIR传染病模型,借助再生矩阵得到了确定此接种模型动力学行为的基本再生数.当基本再生数小于1时,模型只有无病平衡点;当基本再生数大于1时,除无病平衡点外,模型还有唯一的地方病平衡点.借助Liapunov函数,证明了无病平衡点和地方病平衡点的全局稳定性. Under the assumption that the vaccinated individuals have partial immunity, an SEIR epidemic model with Latent period and vaccination was established, and the basic productive number determining the dynamics of the model was obtained. When the basic productive number is less than 1, the model only has the disease-free equilibrium; when the basic productive number is greater than 1, in addition to the disease-free equilibrium, the model also has a unique endemic equilibrium. By means of Liapunov function, the global stability of the disease-free equilibrium and endemic equilibrium was proved.
出处 《数学的实践与认识》 CSCD 北大核心 2009年第17期97-103,共7页 Mathematics in Practice and Theory
基金 国家自然科学基金(10471040) 山西省自然科学基金(2009011005-3) 山西省重点扶持学科项目
关键词 传染病模型 部分免疫 平衡点 全局稳定性 epidemic model partial immunity equilibrium global stability
  • 相关文献

参考文献8

  • 1辛京奇,王文娟.一类带有接种的SIR传染病模型的全局分析[J].数学的实践与认识,2007,37(20):71-76. 被引量:6
  • 2Li Jianquan, Ma Zhien. Global analysis of SIS epidemic models with varying total population size[J]. Mathematical and Computer Modelling, 2004,39 : 1231-1242.
  • 3Li Jianquan, Ma Zhien, Zhou Yicang, Global analysis of SIS epidemic model with a simple vaccination and mulliple endemic equilibria [J]. Acta Mathematica Scientia, 2006,26B( 1 ) : 83- 93.
  • 4Liu X, Takeuchib Y, Iwami S. SVIR epidemic models with vaccination strategics [J]. Journal of Theoretical Biology, 2008,253 : 1 - 11.
  • 5Krihs-Zalcta C M, Velasco-Hernandez J X. A simple vaccination model with multiple endemic states [J]. Mathematical Biosciences, 2000,164 : 183-201.
  • 6Yang Yali, Li Jianquan, Qin Yan. Global stability for an SEIR epidemic model with vaccination[A]. Advances on Biomathematics, eds : Jiang Yong, Cheng Shuhan Liverpool, UK : World Academic Press,2008,2 : 691-694.
  • 7van den Driessche P, Watmough J. Reproduction numbers and sub threshold endemic equilibria for compartmental models of disease transmission[J]. Mathematical Biosciences, 2002,180 : 29-48.
  • 8LaSalle J P. The Stability of Dynamical Systems [M]. Regional Conference Series in Applied Mathematics, Philadelphia : SIAM, 1976.

二级参考文献3

共引文献5

同被引文献17

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部