期刊文献+

求解椭圆方程的径向基无网格配置法 被引量:1

A Meshless Method for Elliptic Equations by Collation with Radial Basis Functions
原文传递
导出
摘要 针对一、二维椭圆方程构造了径向基无网格配置法;给出了解的存在唯一性;同时得到了基函数中自由参数c与求解精度的关系,以及节点均布时自由参数最佳取值的计算公式。将节点均布下得到的自由参数取值公式应用于节点任意排列的情况,其求解精度仍能得到保证。 A meshless method for one and two-dimensional elliptic equations by collation with radial basis functions was structured, and the existence of only solution was given, at the same time, the relations of the solution precision and the free parameter c in the radial basis functions were obtained. The formulas for the optimum value of free parameter and its calculated value when the nodes were uniformly distributed were also obtained from the solution. We applied those formulas to the condition of random nodes and found its solution could still keep a satisfied precise,which meant that this method wasn't sensitive to the distribution of nodes.
出处 《世界科技研究与发展》 CSCD 2009年第4期718-721,共4页 World Sci-Tech R&D
基金 国家自然科学基金项目(50679073) 陕西省教育厅自然科学研究项目(08JK391)
关键词 径向基函数 无网格配置法 自由参数 radial basis function meshless method by collation free parameter
  • 相关文献

参考文献15

二级参考文献49

  • 1.GB1236-2000.工业通风机用标准化风道进行性能试验[S].,..
  • 2Cate Jones. How to obtain combustion air flow measuremeats accuracy [J]. Power. May 1994,138(5): 51-53.
  • 3Funahashi K On the approximate realization of contimmons mapping by neural networks[J].Neural Network. 1989, 2(2): 183-192.
  • 4Poggio T,Girosi E Networks for approximation and learning[J].Proc.IEEE 1990,78(9): 1481-1495.
  • 5Girosi F,Jones M, Poggio T. Regulation theory and neural networks architectures [J]. Neural Computation. 1995(7): 219-269.
  • 6吴宗敏,1986年
  • 7Sun X,J Approx Theor,1993年,74卷,159页
  • 8Guo K,Numer Funct Anal Optimiz,1993年,14卷,371页
  • 9Wu Z,Approx Theory Appl,1992年,8卷,2页
  • 10Xu Y,Comp Math Appl,1992年,24卷,201页

共引文献85

同被引文献7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部