期刊文献+

一种数字人脑部切片图像分割新方法 被引量:4

A new segmentation method for slice images of digital human brain
在线阅读 下载PDF
导出
摘要 目的提出一种人脑切片图像自动分割算法,以克服现有的方法对大量人工参与的依赖。方法针对人脑切片图像的特征,提出一种基于区域生长的灰度直方图阈值化分割算法。首先通过区域生长过程对图像进行初始的粗分割,再用直方图阈值化方法进行二次细分割提取目标区域。结果采用此方法准确有效地分割出了大脑白质和大脑皮质。结论此算法结合切片图像的全局信息和局部信息应用于分割,是一种比较好的分割方法。 Objective To present a new automatic segmentation algorithm for human slice images,in order to reduce the massive manual intervention in the existing segmentation methods. Methods According to the features of slice images of digital human brain, a segmentation algorithm based on the theory of region growing and threshold in normal gray histogram was proposed. More exactly, the slice images were initially segmented coarsely by means of the region growing. Then the method of threshold in normal gray histogram was adopted to refine the segmentation. Results White matter and cerebral cortex were segmented accurately and effectively with this method. Conclusion This algorithm characterized by the combination of global information and local information of a slice image for automatic segmentation exhibits good performance.
出处 《中国医学影像技术》 CSCD 北大核心 2009年第8期1488-1491,共4页 Chinese Journal of Medical Imaging Technology
基金 国家自然科学基金(60771025)
关键词 切片图像分割 白质 皮质 区域生长 Slice image segmentation White matter Cerebral cortex Region growing
  • 相关文献

参考文献9

二级参考文献57

  • 1李卓,郭立红.快速图像处理中阈值选取方法的比较研究[J].微计算机信息,2006(03S):224-225. 被引量:56
  • 2[1]Ko Sung.Jea,Lee Yong.Hoon.,Center weighted median filters and their applications to image enhancement[J].IEEE Transactions onCircuits and Systems,1991,38 (9):984~993.
  • 3[2]Wang Zhou,Zhang David.Progressive switching median filter for the removal of impulse noise from highly corrupted images[J].IEEE Transactionsons on Circuits and Systems,1999,46 (1):78~80.
  • 4[3]Miyojim M.Cheng H D.Synthesized Images for Pattern Recognition[J].Pattern Recognition,1995,(4):15 ~16.
  • 5[4]Sorin Zoican.Imp roved median filter for impulse noise removal[J].TELSIKS Serbia andMotenegra,Ni?,2003,10 (123):681~684.
  • 6Marr D. Vision[M]. USA: Freeman Publishers. 1982.
  • 7John C. A computational approach to edge detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, PAMI-8(6) :679-698.
  • 8Lim JS. Two-dimensional signal and image processing[M] . Englewood Cliffs, NJ: Prentice Hall, 1990. 478-488.
  • 9Parker JR. Algorithms for image processing and computer vision[M]. New York: John Wiley & Sons, Inc, 1997.23-29.
  • 10Stephane Mallat, Sifen Zhong. Characterization of signals from multiscale edges[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992,14(7): 710-732.

共引文献30

同被引文献46

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部