期刊文献+

权值优化组合粒子滤波算法研究 被引量:13

Research on weight optimal combination particle filter algorithm
在线阅读 下载PDF
导出
摘要 重采样粒子滤波算法(Sampling Importance Resampling,SIR)能够克服粒子群衰退现象,但同时减少了粒子的多样性,导致滤波性能下降甚至滤波发散。提出了一种基于权值优化组合的粒子滤波算法(WeightOptimal Combination ParticleFilter,WOCPF),通过在重采样前对粒子权值和粒子群权值的均值进行优化组合,减少重采样中抛弃的粒子数,保持了粒子的多样性,提高了算法的精度。仿真结果证明,粒子数相同情况下,WOCPF算法性能优于SIR算法。 Sampling Importance Resampling(SIR) arithmetic can reduce the degenerate phenomenon of particles.But it leads to the loss of diversity in particles.The loss makes filter's performance worse,even makes filtering diffuse.A Weight Optimal Combination Particle Filter(WOCPF) arithmetic is developed based on linear combination of particle weights and the particle swarm average weight,which reduces the amount of abandoned particles,overcomes the loss of diversity and improves its precision.Simulation results show that on the condition of the same particle amount,WOCPF arithmetic is better than SIR arithmetic.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第24期33-35,39,共4页 Computer Engineering and Applications
关键词 粒子滤波 重采样 权值 优化组合 粒子多样性 particle filter resampling weight optimal combination diversity among the particles
  • 相关文献

参考文献4

二级参考文献28

  • 1胡洪涛,敬忠良,李安平,胡士强.非高斯条件下基于粒子滤波的目标跟踪[J].上海交通大学学报,2004,38(12):1996-1999. 被引量:54
  • 2胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 3Kotecha J H,Djuric P M.Gaussian particle filtering[J].IEEE Transactions on Signal Processing,2003,51(10),2592-2601.
  • 4Sanjeev M,Maskell S.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Transactions on Signal Processing,2002,50(2):174-188.
  • 5Doucet A,Godsill S.On sequential Monte Carlo sampling methods for Bayesian filtering[R].Department of Engineering University of Cambridge,UK,Technical Report.1998.1-36.
  • 6Bergman N,Recursive bayesian estimation:Navigation and tracking applications[D].Linkoping,Sweden:Linkoping Univ,1999.
  • 7Liu J S,Chen R,Sequential Monte Carlo methods for dynamical systems[J].J Amer Statist Assoc,1998,93:1032-1044.
  • 8Kitagawa G.Monte Carlo filter and smoother for non-Gaussian nonlinear state space models[J].J Comput Graph Statist,1996,5 (1):1-25.
  • 9Belviken E,Acklam P J.Monte Carlo filters for nonlinear state estimation[J].Automatica,2001,37(1):177-183.
  • 10Liu J S,Chen R.Sequential Monte Carlo methods for dynamical systems[J].Journal of the American Statistical Association,1998,93 (5):1032-1044.

共引文献332

同被引文献101

引证文献13

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部