期刊文献+

热弹性材料齐次状态向量方程和复合材料层合面板的精确解 被引量:4

HOMOGENEOUS STATE-VECTOR EQUATION FOR THERMOELASTIC MATERIALS AND EXACT SOLUTION OF COMPOSITE LAMINATED PANELS
在线阅读 下载PDF
导出
摘要 首先以修正的H-R(Hellinger-Reissner)变分原理,先推导出热弹性材料的非齐次状态方程,再利用热平衡方程和热传导方程变量间的对偶关系,通过增加非齐次状态向量矩阵的维数,将非齐次状态方程转化为可以独立求解的齐次状态向量方程;根据对偶理论,将热传导方程并入材料的本构关系中,得到新的修正的H-R变分原理,从而可直接推导出热弹性材料的齐次状态向量方程。齐次状态向量方程的导出可大大简化热弹性体稳态温度问题的求解,最后以一算例验证文中方法的准确性和可靠性。 Firstly, by the modified mixed H-R(Hellinger-Reissner) variational principle, the non-homogeneous state-vector equation for thermoelastic materials is derived. And then the symplectic relationships of variables in the thermal equilibrium formulations and the gradient equations are considered, the non-homogeneous state-vector equation is transformed into homogeneous state-vector equation for solving independently the coupling problem of thermoelastic bodies by increasing the dimensions of the non-homogeneous state-vector equation. By extending the constitutive relation and establishing a new modified mixed H-R variational principle of thermoelastic materials, the homogeneous state-vector equation is derived straightway from the new variation theorem by performing the variational operations. The homogeneous state-vector equation can simplify greatly the solution procedure of the steady state temperature problem of thennoelastic bodies. A numerical example validates the veracity and reliability of the homogeneous state-vector equation.
出处 《机械强度》 CAS CSCD 北大核心 2009年第4期638-644,共7页 Journal of Mechanical Strength
基金 天津市自然科学基金资助项目(07JCYBJC02100)~~
关键词 热弹性层合面板 H-R(Hellinger-Reissner)变分原理 对偶变量 非齐次状态向量方程 齐次状态向量方程 Thermoelastic laminated panels Hellinger-Reissner (H-R) variational principle Symplectic variables Non- homogeneous state-vector equation Homogeneous state-vector equation
  • 相关文献

参考文献33

  • 1Lure A I. Three-dimensional problems of theory of elasticity[M]. New York: Interscience Publishers, 1964: 401-426.
  • 2Kameswara Rao N S V, Das Y C. Mixed method in elasticity[J]. Journal of Applied Mechanics, Transactions ASME, 1977, 44(1) : 51-56.
  • 3Ting T C T. Anisotropic elasticity theory and applications[M]. New York: Oxford University Press, 1996: 497-536.
  • 4Chandrashekara S, Santhosh U. Natural frequencies of cross-ply laminates by state space approach[J]. Journal of Sound and Vibration, 1990, 136(3): 413-424.
  • 5Fan J R, Ye J Q. A series solution of the exact equation for thick orthotropic plates[J]. International Journal Solids and Structures, 1990, 26(7): 773-778.
  • 6Khdeir A A, Rajah M D, Reddy J N. Thermal effects on the response of cross-ply laminated shallow shells[J]. International Journal of Solids and Structures, 1992, 29(5): 653-667.
  • 7Wang Y M, Tam J Q, Hsu C K. State space approach for stress decay in laminates[J]. International Journal of Solids and Structures, 2000, 37(26) : 3535-3553.
  • 8Sosa H A. On the modelling of piezoelectric laminated structures[J]. Mech. Ras. Comm., 1992, 19(6): 541.
  • 9Sosa H A, Castro M A. On the elastic and electric analyses of piezoelectric solids[J]. ASME, Adaptive Structures and Material Systems, 1993, 35: 209-215.
  • 10Lee J S, Jiang L Z. Exact electroelastic analysis of piezoelectric laminae via state space approach[J]. International Journal Solids and Structures, 1996, 33(7): 977-990.

二级参考文献15

共引文献70

同被引文献56

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部