期刊文献+

耗散腔中简并Raman耦合系统中光场的相位特性

The Phase Properties of the Field Interacting with Λ-type Atoms via Raman Coupling in a Dissipative Cavity
在线阅读 下载PDF
导出
摘要 利用Pegg-Barnett相位理论,研究了耗散腔中两个Λ型原子与相干态光场在Raman相互作用下光场的相位特性,并讨论了光场平均光子数和腔场耗散系数对光场相位特性的影响。结果表明:当腔不存在损耗时,光场相位分布概率以π/λ作周期性振荡;且在t=nπ/λ时刻,光场和原子是退纠缠的,相位分布概率曲线在极坐标图中呈单叶型结构;但在演化周期内,由于光场与原子的相互作用相位分布概率曲线会劈裂为多叶型结构。当腔场存在损耗时,相位分布概率的叶型结构会向中心扩散最终变为一个圆,即表明在考虑腔场耗散时光场的相位最终会变为随机分布;而且腔的耗散系数越大,光场相位越快趋于随机分布。另外,随光场的平均光子数增大,光场相位分布趋于集中。光场相位涨落受到腔场耗散的影响呈现出衰减周期振荡最终达到稳定值,而且达稳定值所需时间随耗散系数的增大而缩短。 By means of Pegg and Barnett phase formalism, the phase properties of the field interacting with two ∧-type three-level atoms via Raman coupling in a phase damped cavity is discussed. The influences of decay coefficient of the cavity and the intensity of the field on the phase distribution as well as its fluctuation are discussed. The results show: if there is absence of the phase damping, the phase distribution oseillates with the period π/λ. It presents single leaf at t = nπ/λ, but it splits into multi-leaf construction during the evolution period due to the interaction between the field and the atoms. If there is presence of the phase damping, the obvious leaf construction of the phase distribution become obscure and contract into a circle, which indicates the random distribution of the phase. Moreover, the larger the decay coefficient is, the more rapidly the phase becomes random distribution. The narrowing of the leaf and the increasing amplitude of the phase distribution corresponds to a stronger field. The phase fluctuation shows damped oscillatory behavior and ultimately reaches a steady value in the phase damped cavity. The time for it to approach the steady value shortens when decay coefficient increases.
出处 《量子光学学报》 CSCD 北大核心 2009年第3期215-220,共6页 Journal of Quantum Optics
关键词 相位损耗腔 RAMAN相互作用 相干态光场 Pegg—Barnett相位 JCM with Raman coupling Pegg-Barnett phase coherent field phase damped cavity
  • 相关文献

参考文献16

  • 1PEGG D T,BARNETY S M.Phase Properties of the Quantized Single-mode Electromagnetic Field[J].Phys Rev A,1989,39(4):1665-1675.
  • 2范安辅,范欣,周昕.存在Kerr介质的广义Jaynes-Cummings模型非线性耦合强度对光场量子相位特性的影响[J].量子光学学报,2000,6(1):36-43. 被引量:5
  • 3MENG H X,CHAI C L,ZHANGZ M.Phase Dynamics of Coherent Light in the M-photon J-C Model[J].Phys Rev A,1992,45:2131.
  • 4TIANYH PENGJS TAOSH etal.Phase Properties of Light in the Tavis-Cumming Model.量子电子学报,1996,13(4):310-315.
  • 5GERRY C C.On the Phase Fluctuations of Coherent Light Interacting with an Anharmonic Oscillator[J].Optics Comm,1990,75:168.
  • 6GAN TSOG,TANA S R.Phase Properties of Self-squeezed States Generated by the Anharmonic Oscillator[J].J Mod Opt,1991,38:1021.
  • 7PEIXOTO DE FARIA J G,NEMES M C.Dissipative Dynamics of the Jaynes-Cummings Model in the Dispersive Approximation Analytical Results[J].Phys Rev A,1999,59 (5):3918-3925.
  • 8朱敏,周青春.Kerr介质中J-C模型的色散近似耗散动力学[J].量子光学学报,2007,13(4):245-249. 被引量:5
  • 9SUN KYUNG LEE,HAI-WOONG LEE.Damped Population Oscillation in a Spontaneously Decaying Two-level Atom Coupled to a Monochromatic Field[J].Phys Rev A,2006,74(6):3817.
  • 10ZHOU Ling,SONG He-shan,LUO Yan-xia,et al.Dissipative Dynamics of Two-photon J-C Model with Stark Shift in the Dispersive approximation[J].Phys Lett A,2001,284(4):156.

二级参考文献7

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部