摘要
随着航天器在轨服务的发展,快速绕飞成为当前航天任务设计的一个重要课题。快速绕飞采用受限相对运动轨迹,为了实现任务目标需要考虑航天器位置与姿态的六自由度耦合控制问题。采用滑模变结构控制理论,解决了航天器快速绕飞的六自由度推力控制问题。首先,从完全非线性相对轨道动力学方程和修正罗德里格斯参数表示的姿态运动学方程出发,建立了包含未知有界干扰的六自由度动力学模型,该模型形式简单,适用于任意偏心率的目标轨道;其次,以圆形绕飞为例,给出了任意方位快速绕飞轨迹的数学表示和任意位置期望姿态的计算模型;然后,考虑航天器形状及推力器配置,应用滑模变结构控制的趋近律方法,设计了对未知有界干扰具有鲁棒性的控制律。最后的仿真算例验证了控制律的有效性。
With the development of on-orbit servicing, fast circumnavigation used to proximity inspection on the target has been a key concern for spacecraft mission design currently. To achieve the mission goal, the coupled 6-DOF position and attitude control problem, induced by the forced relative motion trajectory and specific pointing requirement, must be solved. Sliding control theory is applied to control both position and attitude states for the chaser spacecraft using only thrusters. Firstly, a coupled 6-DOF dynamics model is derived from the fully nonlinear relative motion dynamics equations and attitude kinematics equations described by MRPs. Moreover, unknown bounded disturbances are considered. Secondly, the trajectory and desired attitude for fast circular circumnavigation are formulated. And then, given the size and thruster layout of the chaser, a globally stable sliding mode robust controller is designed by the exponential approach algorithm for smooth tracking. Finally, the simulation results show that the controller is efficient.
出处
《宇航学报》
EI
CAS
CSCD
北大核心
2009年第4期1482-1488,共7页
Journal of Astronautics
基金
国家863基金项目资助(2007AA704114)
关键词
航天器
六自由度
相对运动
快速绕飞
滑模控制
Spacecraft
6-DOF
Relative motion
Fast circumnavigation
Sliding mode control