期刊文献+

基于指定元分析的多故障诊断方法 被引量:16

DCA Based Multiple Faults Diagnosis Method
在线阅读 下载PDF
导出
摘要 为了克服传统主元分析(Principal component analysis,PCA)因模式复合现象而无法进行多故障诊断和诊断结果难以解释的不足,本文引入指定元分析(Designated component analysis,DCA)的思想,建立DCA多故障诊断理论的空间投影框架,从而把异常检测问题转化为将观测数据向故障子空间投影后投影能量的显著性检测问题.在确定系统存在异常的情况下,再将观测数据向故障子空间中各故障模式方向分别进行投影,根据投影能量的显著性进行多故障诊断.并利用正交补空间构造法证明了基于非正交模式指定元分解形式的可行性和收敛性,建立了一种逐步DCA多故障诊断方法以解决指定模式非正交情况下的多故障诊断问题.包含5种共存故障的观测数据的仿真研究验证了新方法的有效性. As it can avoid pattern compounding problem of principal component analysis (PCA), designated component analysis (DCA) is introduced to implement multiple faults diagnosis of a multivariate system. A projection frame, which is the theory foundation for DCA based multiple faults diagnosis, is established in this paper. Under the DCA projection frame, anomaly detection and fault diagnosis problem is transformed into the significance detection problem for projection energy of the observation data projected to fault subspace spanned by fault patterns defined in advance. Then, for the case when designated patterns are not orthogonal to each other, a progressive DCA diagnosis method is developed by grouping the designated patterns into several orthogonal subgroups to the observation data or the residual of the previous DCA process. Simulation for data involved 5 faults shows the efficiency of the progressive DCA method for multiple faults diagnosis.
出处 《自动化学报》 EI CSCD 北大核心 2009年第7期971-982,共12页 Acta Automatica Sinica
基金 国家自然科学基金(60804026 60572051) 浙江省国际合作重点项目(2006C24G2040012) 上海市教委重点学科(J50602)资助~~
关键词 投影框架 非正交模式 多故障诊断 指定元分析 主元分析 Projection frame, non-orthogonal variation pattern, multiple faults diagnosis, designated component analysis (DCA), principal component analysis (PCA)
  • 相关文献

参考文献15

  • 1Venkatasubramanian V,Rengaswamy R,Yin K,Kavuri S N.A review of process fault detection and diagnosis part Ⅰ:quantitative model-based methods.Computers and Chemical Engineering,2003,27(3):293-311
  • 2Mao Z H,Jiang B,Shi P,Cocquempot V.High gain observer-based fault estimation for nonlinear networked control systems.In:Proceedings of the American Control Conferenos.Washington D.C.,USA:IEEE,2008.3058-3063
  • 3Odgaard P F,Lin B,Jorgensen S B.Observer and datadriven-model-based fault detection in power plant coal mills.IEEE Transactions on Energy Conversion,2008,23(2):659-668
  • 4Wang Y Q,Zhou D H,Gao F R.Robust fault-tolerant control of a class of non-minimum phase nonlinear processes.Journal of Process Control,2007,17(6):523-537
  • 5Simani S,Patton R J.Fault diagnosis of an industrial gas turbine prototype using a system identification approach.Control Engineering Practice,2008,16(7):769-786
  • 6Peng D Z,Zhang Y.Dynamics of generalized PCA and MCA learning algorithms.IEEE Transactions on Neural Networks,2007,18(6):1777-1784
  • 7葛志强,刘毅,宋执环,王海清.一种基于局部模型的非线性多工况过程监测方法[J].自动化学报,2008,34(7):792-797. 被引量:14
  • 8文成林,胡静,王天真,陈志国.相对主元分析及其在数据压缩和故障诊断中的应用研究[J].自动化学报,2008,34(9):1128-1139. 被引量:30
  • 9李钢,周东华.基于SPM的多变量连续过程在线故障预测方法[J].化工学报,2008,59(7):1829-1833. 被引量:9
  • 10Verde C,Mina J.Principal components structured models for fault isolation.In:Proceedings of the 17th World Congress of the International Federation of Automatic Control.Seoul,Korea:Elsevier,2008.795-808

二级参考文献35

  • 1何昭水,谢胜利,章晋龙.基于QR分解的盲源分离几何算法[J].控制理论与应用,2005,22(1):17-22. 被引量:4
  • 2陆宁云,王福利,高福荣,王姝.间歇过程的统计建模与在线监测[J].自动化学报,2006,32(3):400-410. 被引量:64
  • 3周志杰,胡昌华,周东华.基于非解析模型的动态系统故障预报技术[J].信息与控制,2006,35(5):608-613. 被引量:15
  • 4周东华 叶银忠.现代故障诊断与容错控制[M].北京:清华大学出版社,2001.11-18.
  • 5XIA Rui MENG Ke QIAN Feng WANG Zhen-Lei.Online Wavelet Denoising via a Moving Window[J].自动化学报,2007,33(9):897-901. 被引量:15
  • 6Dr Robert M Gresham.Condition Monitoring:the land of the acronym.Lubrication Engineering,2003(1):7-8.
  • 7Chiang L H, Russell E L, Braatz R D. Fault Detection and Diagnosis in Industrial Systems. London: Springer-Verlag, 2001.
  • 8Rotem Y, Wachs A, Lewin D R. Ethylene compressor monitoring using model-based PCA. American Institute of Chemical Engineers Journal, 2000, 46(9): 1825-1836.
  • 9Rattan S S P, Hsieh W W. Complex-valued neural networks for nonlinear complex principal component analysis. Neural Networks, 2005, 18(1): 61-69.
  • 10Vapnik V N. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995.

共引文献56

同被引文献290

引证文献16

二级引证文献167

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部