期刊文献+

动态环境下的双子群PSO算法 被引量:10

Two subpopulation swarm PSO algorithm in dynamic environment
原文传递
导出
摘要 通过两组搜索方向相反、相互协同的主、辅子群,构造一种新的双子群粒子群优化算法.该算法扩展了种群的搜索范围,充分利用搜索域内的有用信息,在感知到环境变化时能迅速、准确地跟踪动态变化的极值.使用DF1(Dynamic Function 1)生成的复杂动态环境对该算法进行了验证,并与Eberhart提出的动态环境下的粒子群优化算法进行了比较分析.仿真结果表明了该算法的有效性. Through main subpopulation particle swarm and assistant subpopulation particle swarm, whose searching direction are inversed completely, a two-subpopulation particle swarm optimization algorithm is proposed, which extends the searching rang. Changing extrema can be tracked promptly and accurately when the variable envrionment is detected. The simulative environment used in these experiments is generated by DF1 (Dynamic Function 1), and the results show that the improved PSO algorithm is more effective and adaptive than the PSO algorithm proposed by Eberhart.
作者 焦巍 刘光斌
出处 《控制与决策》 EI CSCD 北大核心 2009年第7期1083-1086,1091,共5页 Control and Decision
关键词 粒子群优化 动态环境 子群 PSO Dynamic environment Subpopulation
  • 相关文献

参考文献8

  • 1Kennedy J, Eberhart R. Particle swarm optimization [C]. Proc of IEEE Int Conf on Neural Networks. Perth: IEEE Press, 1995, 4: 1942-1947.
  • 2Hu X H, Russell C Eberhart. Adaptive particle swarm optimization: Detection and response to dynamic systems[C]. Proe of the IEEE Int Conf on Evolutionary Computation. Honolulu: IEEE Press, 2002: 1666- 1670.
  • 3Carlisle A, Dozier G. Tracking changing extrema with adaptive particle swarm optimizer [ C ]. World Automation Congress. Orlando, 2002: 265-270.
  • 4Blackwell T, Branke J. Multi-swarm optimization in dynamic environments [ C ]. Proc of the 2004 Applications of Evolutionary Computing Workshops. Coimbra: IEEE Press, 2004: 489-500.
  • 5Du W L, Li B. Multi-strategy ensemble particle swarm optimization for dynamic optimization[J].Information Sciences, 2008, 178(15):3096-3109.
  • 6单世民,邓贵仕.动态环境下一种改进的自适应微粒群算法[J].系统工程理论与实践,2006,26(3):39-44. 被引量:16
  • 7胡静,曾建潮,谭瑛.动态环境下基于种群多样性的微粒群算法[J].系统仿真学报,2007,19(21):4932-4935. 被引量:11
  • 8Morrison R W, De Jong K A. A test problem generator for non-stationary environments [C]. Proc of the Congress on Evolutionary Computation. Piscataway: IEEE Press, 1999:2047-2053.

二级参考文献19

  • 1单世民,邓贵仕.动态环境下一种改进的自适应微粒群算法[J].系统工程理论与实践,2006,26(3):39-44. 被引量:16
  • 2Kennedy J,Eberhart R C.Particle Swarm Optimization[A].Proc IEEE International Conference on Neural Networks[C].Piscataway,NJ.IEEE Press,1995,IV:1942-1948.
  • 3Hu X,Eberhart R C.Adaptive particle swarm optimization:Detection and response to dynamic systems[A].Proceedings of the IEEE Congress on Evolutionary Computation[C].Honolulu,Hawaii USA.2002:1666-1670.
  • 4Carlisle A,Dozier G.Adapting Particle Swarm Optimization to Dynamic Environments[A].Proceedings of International Conference on Artificial Intelligence[C].Las Vegas,NV,USA,2000,1:429-434.
  • 5Carlisle A,Dozier G.Tracking Changing Extrema with Adaptive Particle Swarm Optimizer[A].ISSCI,World Automation Congress[C].Orlando FL USA,2002:265-270.
  • 6Angeline P.Tracking Extrema in Dynamic Environments[A].Proceedings of the Sixth Annual Conference on Evolutionary Programming[C],1997,4:335-345.
  • 7Morrison R W,De Jong K A.A test problem generator for non-stationary environments[A].In Congress on Evolutionary Computation[C],1999,3:2047-2053.
  • 8Li Xiaodong,Khanh Hoa Dam.Comparing Particle Swarms for Tracking Extrema in Dynamic Environments[A].In Congress on Evolutionary Computation[C],2003,3:1772-1779.
  • 9Kennedy J.The Particle Swarm:Social Adaptation of Knowledge[A].IEEE International Conference on Evolutionary Computation (Indianapolis,Indiana)[C].IEEE Service Center,Piscataway,NJ,1997:303-308.
  • 10Shi Y H,Eberhart R C.A Modified Particle Swarm Optimizer[A].Proceedings of the IEEE International Conference on Evolutionary Computation[C].Piscataway,NJ.IEEE Press,1998:69-73.

共引文献21

同被引文献97

引证文献10

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部