期刊文献+

基于EM和GMM相结合的自适应灰度图像分割算法 被引量:9

Image Segment Based on the Self-adaptive Threshold EM and GMM Algorithm
在线阅读 下载PDF
导出
摘要 提出一种阈值自适应、EM方法估计GMM参量的图像分割算法,能够根据图像的内容结合区域和边界两方面的信息自适应地选择阈值,精确地进行图像边界分割.算法首先提取图像的边界,然后根据边界的直方图计算图像的可分割性,由可分割性确定EM方法的阈值进行GMM分割,最后合并图像的近似区域.实验数据表明,相比其它图像分割算法,以及固定阈值的传统EM算法,本算法的分割结果更为准确. A new segment algorithm which was self adaptive to the image content, combining patch-based information with edge cues under a probabilistic framework was presented. Edges were detected firstly. Then a histogram and the segmentable measure of the imgae were computed. I.ater EM algorithm was adopted to estimate the mixture of multiple Gaussians which was built as a statistical model on spatial features. Lastly the adjacent regions with similar properties are united to one. The novelty of this algorithm is that the threshold was computed by segmentable measure which was adaptive to image. Some experimental results are qualitatively and quantitatively evaluated on a large data-set of natural images by rand index (RI) and ground-truth,and it shows that the proposed method has an outstanding effect.
出处 《光子学报》 EI CAS CSCD 北大核心 2009年第6期1581-1585,共5页 Acta Photonica Sinica
基金 国家重点学科(G708) 上海市重点学科(B67)资助
关键词 图像分割 混合高斯模型 期望最大算法 自适应阈值 Image Segment Gaussian mixture model (GMM) Expectation Maximization (EM) algorithm Self-adautive threshold
  • 相关文献

参考文献12

  • 1郝伟,苏秀琴,李哲.基于灰度变换的红外图像实时分割算法[J].光子学报,2008,37(5):1077-1080. 被引量:6
  • 2张变莲,唐慧君,闫旻奇.一种复杂车辆图像中的多车牌定位方法[J].光子学报,2007,36(1):184-187. 被引量:15
  • 3ZHANG Hui. JASON E F,SALLY A G. Image segmentation evaluation: A survey of unsupervised methods[J]. Computer Vision and Image Understanding ,2008,5( 110) :260-280.
  • 4ARTHUR D, NAN L. DONAI.D R. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society, 1977, Series B,39( 1 ) : 1-38.
  • 5GREENSPAN H, RUFF A, GOI.DBERGER J. Constrained Gaussian mixture model framework for automatic segmentation of MR brain images[J]. IEEE Trans Med Imaging,2006,25(9):1233-1245.
  • 6LIU Xia bi, HUI Fu, YUNDE J. Gaussian mixture modeling and learning of neighboring characters for multilingual text extraction in images[J]. Pattern Recognition ,2008,2(41):484- 493.
  • 7邵枫,蒋刚毅,郁梅,陈偕雄.一种基于区域分割与跟踪的多视点视频校正算法[J].光子学报,2007,36(8):1543-1547. 被引量:3
  • 8YU Yuanhui, CHANG Chin chen. A new edge detection approach based on image context analysis [J]. Image ant Vision Computing, 2006.10( 24 ) : 1090-1102.
  • 9UNNIKRISHNAN R, PANTOFARO C. HEBERT M. A measure for objective evaluation of image segmentation algorithms[J].Computer Vision and Pattern Recognition, 2005 (6) :254-267.
  • 10FOWI.KES C. MARTIN D, MALIK J. Learning affinily functions for image segmentalion: Combining patch based and gradient based approaches[C].Vision and Vision and Pattern Recognition (CVPR) ,2003,1:51-61.

二级参考文献26

共引文献21

同被引文献93

引证文献9

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部