期刊文献+

基于优序图加权的多维稀疏模糊推理方法 被引量:4

Multidimensional Sparse Fuzzy Reasoning Method Based on Weight of Precedence Chart
在线阅读 下载PDF
导出
摘要 在稀疏规则库条件下,多数的多维稀疏规则条件近似推理方法都难以保证推理结果的凸性和正规性,且没有考虑到多维变量对结论的影响权值。提出一种基于优序图加权的多维模糊推理方法,运用优序图确定权值,实验结果表明,该方法不仅减小推理结果的误差,而且能较好地保证推理结果的凸性和正规性。 Most interpolative reasoning methods in multi-dimension cannot guarantee the convexity and normality of result, and cannot consider weights of each variable influencing conclusion. This paper proposes a fuzzy multidimensional reasoning method based on weight of Precedence Chart(PC), which confirms the weights by Precedence Chart(PC). Experimental results show that it not only reduces the errors, but also keeps the convexity and normality of the reasoning consequence.
出处 《计算机工程》 CAS CSCD 北大核心 2009年第11期210-212,215,共4页 Computer Engineering
基金 国家科技部高新技术计划基金资助项目(2005EJ000017) 河北省科技研究与发展计划基金资助项目(02547015D)
关键词 多维稀疏模糊推理 优序图 权值 相似性 multidimensional sparse fuzzy reasoning Precedence Chart(PC) weight similarity
  • 相关文献

参考文献5

  • 1Koczy L T, Hirota K. Interpolative Reasoning with Insufficient Evidence in Sparse Fuzzy Rules Bases[J]. Inform Source Information Sciences, 1993, 9(3): 169-201.
  • 2Marsala C, Bernadette B M. Interpolative Reasoning with Multi-variable Rules[C]//Proc. of the 9th IFSA World Congress and the 20th NAFIPS International Conference. Vancouver, Canada: [s. n.], 2001: 2476-2482.
  • 3卢正鼎,符海东.一种新的多维稀疏规则模糊插值推理方法[J].小型微型计算机系统,2004,25(8):1468-1472. 被引量:3
  • 4金新政,厉岩.优序图和层次分析法在确定权重时的比较研究及应用[J].中国卫生统计,2001,18(2):119-120. 被引量:77
  • 5Wang Baowen, Zhang Qingda, Liu Wenyuan. Multidimensional Fuzzy Interpolative Reasoning Method Based on λ-widthSimilarity[C]//第八届软件工程、人工智能、网络及并行分布式计算国际会议.青岛:[出版者不详],2007:776-781.

二级参考文献11

  • 1张晓珠,谭诸昌.医学课程评估有关问题的探讨[J].医学教育,1995(7):4-10. 被引量:4
  • 2顺庆生,庞传宇,孙国桢,薛文年,史明,唐开源.医学成人高等学校医学专业(大专)评估指标体系及实施方法的研究[J].中国卫生事业管理,1993,9(5):263-265. 被引量:1
  • 3胡琳,于爽.医院综合效益评价指标体系的问题[J].中华医院管理杂志,1993,9(6):321-325. 被引量:17
  • 4区弈勤 张先迪.模糊数学原理及应用[M].成都:成都电讯工程学院出版社,1989.1-68.
  • 5[1]Baranyi P, Gedeon T D and Koczy L T. A general method for fuzzy rule interpolation: Specialized for crisp triangular and trapezoidal rules[C]. In: EUFIT' 95, 1995, 99-102.
  • 6[2]Jenei S. A new approach for interpolation and extrapolation of compact fuzzy quantities[C]. In: Proc. Of the 21th Linz Sern.on Fuzzy Sets theory, 2000, 13-18.
  • 7[3]Cross V and Sudkamp T. Geometric compatibility modification [J]. Fuzzy Sets and Systems,1996, 84:283-299.
  • 8[4]Ou Yi-qin, Zhang Xian-di. Fuzzy math principle and application [M]. ChenDu :ChenDu Telecommunication Technology University Press, 1989.
  • 9[5]Li Hong-xing. Fuzzy control interpolative principle [J]. China Science (E) 1998,28(3):259-267.
  • 10[6]Christophe Marsala. Bernadette bouchon-meunier, interpolative reasoning with multi-variable rules[C]. Proceeding of joint 9th IFSA world congress and 20th NAFIPS international conference. 2001,7 : 2476-2482

共引文献78

同被引文献32

引证文献4

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部