期刊文献+

isMHI结合CAMSHIFT的多目标跟踪 被引量:2

Multi-object tracking by isMHI combining with CamShift
在线阅读 下载PDF
导出
摘要 为实现对视频监控场景中多目标的实时跟踪,提出一种基于isMHI与CamShift的持续跟踪方法。当进入到视频场景中的目标处于运动状态时,该方法基于isMHI对其进行跟踪。当场景中的某些目标转为静止状态时,则基于CamShift对其进行监视锁定,并确定了两种跟踪状态的承接算法。实验数据表明,该方法通过优点互补克服了基于MHI方法以及基于CamShift方法各自的缺陷,能够在保持较小错误率基础上实现对视频场景中多个目标的动态或静态状态下的持续、稳定、实时的跟踪,可用于安全保卫应用或交通应用中感兴趣目标的跟踪监控。 To realize the real-time tracking of multiple objects in video scene, a tracking method based on increased-step Motion History Image (isMHI) and Continuously Adaptive Mean Shift (CAMSHIFF) is proposed. The moving objects entering the video scene could be tracked based on the isMHI, and they could be locked and monitored based on CAMSHIFT instead once they turn to stay, moreover the joint algorithm between the moving state and resting state was also defined. Experimental results show that this method combines with their advantages and overcomes the faults from isMHI based and CAMSHIFT, respectively. So not only the continual, stable and real-time tracking of moving objects can be realized, but also resting objects in video scene with the error rate remains low. Thus, it can be applied to monitoring the interesting objects in the security or the traffic.
出处 《计算机应用》 CSCD 北大核心 2009年第6期1673-1676,共4页 journal of Computer Applications
基金 国家863计划项目(2004AA742209)
关键词 isMHI CAMSHIFT 多目标跟踪 isMHI Continuously Adaptive Mean Shift ( CamShift ) multiple objects tracking
  • 相关文献

参考文献10

  • 1DAVIS J, BOBICK A. The representation and recognition of human movement using temporal templates [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(3): 257-267.
  • 2GARY R B, JAMES W D. Motion segmentation and pose recognition with motion history gradients [ J]. Machine Vision and Applications, 2002, 13(7): 174-184.
  • 3孟繁锋,曾庆双,姜永林,高晓颖.基于改进的tMHI的实时视频运动目标检测及跟踪[J].计算机应用,2007,27(10):2518-2521. 被引量:2
  • 4DORIN C, PETER M. Robust analysis of feature spaces: color image segmentation [ C]// Proceedings of IEEE Conference on Computer Vision. Hongkong: IEEE Press, 1997: 750-755.
  • 5BRADSKI G R. Computer vision face tracking for use in a perceptual user interface [ C]// Proceedings of IEEE Workshop Applications of Computer Vision. Princeton, NJ: IEEE Press, 1998:214-219.
  • 6王亮亮,孙即祥,谭志国.基于人脸检测和CAMSHIFT算法的人脸跟踪系统[J].微计算机应用,2008,29(2):14-17. 被引量:11
  • 7LIU X, CHU HX, LI PJ. Research of the improved CamShift tracking algorithm[ C]// Proceedings of the 2007 IEEE ICMA. Harbin: IEEE Press, 2007:968 -972.
  • 8YANG B, ZHOU HJ, WANG X. Target tracking using predicted CamShift [C]// WCICA 2008: 7th World Congress on Intelligent Control and Automation. Chongqing: IEEE Press, 2008:8501 - 8505.
  • 9刘雪,常发亮,王华杰.基于改进Camshift算法的视频对象跟踪方法[J].微计算机信息,2007,23(21):297-298. 被引量:20
  • 10CHU HX, YE SJ, GUO QC. Object tracking algorithm based on CamShift algorithm combinating with difference in frame[ C]//Proceedings of the IEEE ICAL. Jinan: IEEE Press, 2007:51 -55.

二级参考文献33

  • 1李大湘,彭进业,邓楠.基于多模型及SVM的单人脸跟踪系统[J].微计算机应用,2006,27(2):181-184. 被引量:3
  • 2Comaniciu D,Ramesh V,and Meer R.Real-time tracking of non-rigid objects using mean shift[A].Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition[C],Dublin,Ireland,2000,2:142-149.
  • 3Bradski G R.Computer vision face tracking for use in a perceptual user interface[J].Intel Technology Journal,1998,2:214-219.
  • 4Comaniciu D,Ramesh V,Meer P.Kernel based object tracking[J].IEEE Trans Pattern Analysis Machine Intelligence,2003,25 (5):564-575.
  • 5Caifeng Shan,Yucheng Wei,Tieniu Tan and Frédéric Ojardias.Real time hand tracking by combining particle filtering and mean shift[A].The sixth International Conference on Automatic Face and Gesture Recognition,Seoul,Korea,2004:669-674.
  • 6PARK Y.Shape-resolving local thresholding for object detection[J].Pattern Recognition Letters,2001,22(5):883-890.
  • 7WAN C L,DICKINSON K W,BINNIE T D.A cost-effective image sensor system for transport applications utilizing a miniature CMOS single chip camera[C]// IFAC Transportation systems,Tianjin,Proceedings 1994.
  • 8SHIMIZU K,SHKIGEHARA N.Image processing system used cameras for vehicle surveillance[C]// IEEE Second International Conference on Road Traffic Monitoring,Conference Publication Number 1989,299:61-65.
  • 9KLAUSMANN P,KROSCHEL K,WILLERSINN D.Performance prediction of vehicle detection algorithms[J].Pattern Recognition,1999,32:2063-2065.
  • 10FATHY M,SIYAL M Y.An image detection technique based on morphological edge detection and background differencing for real-time traffic analysis[J].Pattern Recognition Letters,1995,16:1321-1330.

共引文献30

同被引文献18

  • 1傅一平,李志能,袁丁.基于HSI空间的颜色算法提牌照识别的性能[J].计算机工程与设计,2004,25(5):703-707. 被引量:23
  • 2张引.基于空间分布的最大类间方差牌照图像二值化算法[J].浙江大学学报(工学版),2001,35(3):272-275. 被引量:6
  • 3汤一平,叶永杰,朱艺华,顾校凯.智能全方位视觉传感器及其应用研究[J].传感技术学报,2007,20(6):1316-1320. 被引量:49
  • 4Stauffer C, Grimson W. Learning patterns of activity using real time tracking, IEEE Trans. Pattern Anal. Mach. Intell. 2000,22(8):747-767.
  • 5Haritaoglu I, Harwood D, Davis LS. W4: real-time surveillance of people and their activities, IEEE Trans.Pattem Anal.Mach. Intell. 2000,22(8):809-830.
  • 6Amer A, Dubois E, Mitiche A. Real-time system for high-level video representation: application to video surveillance: Conference on Visual Communication and Image Processing (VCIP). Proe. of the SPIE International Symposium on Electronic Imaging. Santa Clara, USA, January 2003, 5022: 530-541.
  • 7Collins R, Lipton A, Kanada T, et al. A system for video sur- veillance and monitoring:VSAM final report,Technical report CMU-RI-TR-00-12, Carnegie Mellon University, May 2000.
  • 8Lv F, Kang J, Nevatia R, Cohen I, Medioni G. Automatic tracking and labeling of human activities in a video sequence. Proc.ofthe 6th IEEE International Workshop on Performance Evaluation of Tracking and Surveillance(PETS04),Prague, Czech Republic,May2004.
  • 9Davis J, Bobick A. The representation and recognition of human movement using temporal templates. IEEE Transac- tions on Pattern Analysis and Machine Intelligence,2001,23 (3):257-267.
  • 10GARY RB, JAMES WD. Motion segmentation and pose recognition with motion history gradients. Machine Vision and Application,2002,13(7): 174-184.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部