摘要
轴承性能退化评估是进行设备主动维护、实现零停机率的关键技术。循环平稳分析能够识别滚动轴承微弱故障,基于统计学习理论的支持向量数据描述是一种具有良好计算性能的单值分类方法。基于此,本文结合二者,提出了一种新的轴承性能评估方法。该方法以循环平稳分析进行特征提取,得到组合切片累积能量,在仅有正常状态下的数据样本时,即可用支持向量数据描述建立知识库,从而实现了对待测样本退化程度的定量评估。通过对轴承加速疲劳寿命试验中全寿命周期的评估,验证了所提出方法的可行性和有效性。
Bearing performance degradation assessment is one of the most important techniques for proactive maintenance and realizing near-zero downtime. Cyclostationarity analysis (CA) can recognize a bearing's weak fault, and statistical learning theory (SLT) based support vector data description (SVDD) is a one-value classification method with excellent computing ability. We combine these two techniques to form a new robust assessment method. CA is used as a feature extraction tool to obtain combination slice accumulation energy, and it only needs normal data to build knowledge database using SVDD, then qualitative degradation degree for test data can be realized. Assessment results of the whole life time of a bearing by accelerated life test validate the feasibility and effectiveness of this method.
出处
《机械科学与技术》
CSCD
北大核心
2009年第4期442-445,共4页
Mechanical Science and Technology for Aerospace Engineering
基金
国家自然科学基金项目(50675140)
国家高技术研究发展计划项目(863计划
2006AA04Z175)资助
关键词
支持向量数据描述
循环平稳
性能退化评估
加速疲劳寿命试验
轴承
support vector data description
cyclostationarity analysis
performance degradation assessment
accelerated life test
bearing