期刊文献+

激光参数对光船性能影响分析 被引量:1

Analysis of Impact of Laser Parameters on Performance of Lightcraft
原文传递
导出
摘要 采用三温度11组元热化学非平衡空气模型计算了激光能量在等离子体中的沉积过程,并在激光脉冲作用结束8μs后采用平衡空气模型,完成激光推进光船工作过程的数值模拟,研究了不同入射激光能量和脉冲宽度对光船推进性能的影响。结果表明:当脉冲宽度相同时,入射激光能量越大,所得冲量耦合系数越大;当入射激光脉冲能量相同时,脉冲宽度越小,所得冲量耦合系数越大。将计算所得冲量耦合系数与Schall实验所得结果进行比较,结果非常吻合。 The absorptive process of laser energy in plasma is simulated by a thermo-ehemical non-equilibrium air model which contained 3 temperatures and 11 species. 8 μs after the laser is terminated, the simulation is switched to an equilibrium air model to compute the operating process of a laser propulsion lightcraft. Then influences as laser energy and pulse length on the propulsive performance of the lighteraft are investigated. The results show that when the pulse length is kept equal, impulse coupling coefficient increases along with laser energy increase, while the impulse coupling coefficient increases along with the decrease of pulse length when laser energy is equal. The coupling coefficients for the lightcraft predicted by simulation agree well with those of tests done by Schall.
出处 《航空学报》 EI CAS CSCD 北大核心 2009年第2期193-199,共7页 Acta Aeronautica et Astronautica Sinica
基金 国家"973"基础研究(61328) 教育部"新世纪优秀人才支持计划"(NCET-06-0927) 国防基础预研项目
关键词 航空航天推进系统 激光推进 吸气模式 冲量耦合系数 数值模拟 aerospace propulsion system laser propulsion air-breathing mode impulse coupling coefficient numerical simulation
  • 相关文献

参考文献21

  • 1Myrabo L N. World record flights of beam riding rocket lightcraft demonstration of "disruptive" propulsion tech nology[R]. AIAA-2001 3798, 2001.
  • 2Schall W O, Bohn W L, Eckel H A, et al. Lighteraft experiments in germany [C]// Proc of SHE. 2000, 4065: 472-481.
  • 3Schall W O; Eckel H A, Mayerhofer W, et al. Compararive lightcraft impulse measurements [C]//Proc of SPIE. 2002, 4760: 908-917.
  • 4Schall W O, Eckel H A, Riede W. Laser propulsion experiments with a high-power pulsed CO2 laser [C]// Proc of SPIE. 2003, 5120: 618-622.
  • 5Wen M, Hong Y J, Cao Z R, et al. Experimental and numerical investigation of effects of laser pulse waveform on lightcraft performance [C]// CP830, Fourth International Symposium on Beamed Energy Propulsion. 2006: 628- 636.
  • 6翟冰洁,左都罗,卢宏,程祖海.空气呼吸模式激光推进实验研究[J].光学与光电技术,2005,3(1):14-17. 被引量:7
  • 7Myrabo L N, Libeau M A, Metoney E D, et al. Pulsed laser propulsion performance of 11-cm parabolic ‘Bell' engines within the atmosphere [R]. AIAA 2002 2732, 2002.
  • 8Mori K, Sasoh A, Myrabo L N. Pulsed laser propulsion performance of 11-cm parabolic ‘Bell' engines [C]// CP830, Fourth International Symposium on Beamed Energy Propulsion. 2006: 38-47.
  • 9Raizer Y P, Thbulewicz A. Laser-induced discharge phenomena[M]//Vlases G C, Pietrzyk Z A. Studies in Soviet Science. New York: Consultants Bureau,1977.
  • 10Feikema D. Analysis of the laser propelled lightcraft vehicle[R]. AIAA-2000-2348, 2000.

二级参考文献18

  • 1李倩,洪延姬,曹正蕊,李俊美.粗糙度与激光强度分布对光船聚焦性能的影响[J].装备指挥技术学院学报,2004,15(4):94-97. 被引量:5
  • 2[1]Kantrowitz A. Propulsion to orbit by ground-based lasers[J].Astronautics and Aeronautics, 1972, 10(5): 74~76
  • 3[2]Pirri A N, Monsler M J , Nebolsine P E. Propulsion by absorption of laser radiation[J]. AIAA J, 1974, 12(9):1254~1261
  • 4[3]Ageev V P, Barchukov A I, Bunkin F V, et al. Experimental and theoretical modeling of laser propulsion[J]. Acta Astronautics, 1980, 7:79~90
  • 5[4]Schall W O, Bohn W L, Eckel H A, et al. Lightcraft experiments in Germany[C]. SPIE, 2000, 3986:472~481
  • 6[5]Tang Zhi-ping, Gong Ping, Hu Xiao-jun, et al. Experimental Investigation on Air-Breathing Mode of Laser Propulsion[C]. AIP Conference Proceedings, 2003, 702:20~30
  • 7[6]Scall W O, Eckel H A, Mayerhofer W, et al. Comparative lightcraft impulse measurements[C]. SPIE, 2002, 4760:908~917
  • 8Hwang C J,AIAA J,1991年,29卷,10期
  • 9叶友达,博士学位论文,1991年
  • 10张涵信,空气动力学学报,1988年,6卷,2期,143页

共引文献40

同被引文献22

  • 1王海兴,陈熙.激光推进的初步数值模拟研究[J].工程热物理学报,2004,25(S1):83-86. 被引量:4
  • 2Myrabo L N, Libeau M A, Meloney E D, et al. Pulsed la set propulsion performance of 11- cm parabolic bell engines within the atmosphere[R]. AIAA -2002- 2792, 2002.
  • 3Wang T S, Mead F B, LarsonCW. Analysis of the effect of pulse width on laser lightcraft performance[R]. AIAA -2001 -3664, 2001.
  • 4Xu S S, Wu Z N, Li Q, et al. Hybrid continuum/DSMC computation of rocket mode lightcraft flow in near space with high temperature and rarefaction effect[J]. Computers & Fluids, 2009, 38(7):1394- 1404.
  • 5Black J W, Krier H, Zerkle D, et al. Characterization of laser sustained plasma behavior during lOkW laser thruster tests[R]. AIAA -1992-3022, 1992.
  • 6Uehara S, Inoue T, Komurasaki K, et al. An experimental study on energy conversion process of an in space CW laser thruster[ C]// Third International Symposium on Beamed Energy Propulsion. Melville: American Institute of Physics, 2005,766: 254-264.
  • 7Rachuk V S, Guterman V Y, Jvanov A V. Experimental investigations of laser propulsion by using gas dynamic laser[C] // Fourth International Symposium on Beamed En ergy Propulsion. Melville: American Institute of Physics, 2006,830:48 -57.
  • 8Zerkle D K, Schwartz S, Mertogul A, et al. Laser- sustained argon plasmas for thermal rocket propulsion[R]. AIAA -1988 -2773, 1988.
  • 9Black J, Krier H, Glumb R J. Laser propulsion 10kW thruster test program results[R]. AIAA -1992- 3218, 1992.
  • 10Jeng S M, Keefer D R, Welle R, et al. Numerical study of laser-sustained argon plasmas in a forced convective flow[R].AIAA- 1986- 1078, 1986.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部