期刊文献+

NUMERICAL SOLUTION OF QUASILINEAR SINGULARLY PERTURBED ORDINARY DIFFERENTIAL EQUATION WITHOUT TURNING POINTS

NUMERICAL SOLUTION OF QUASIL1NEAR SINGULARLY PERTURBED ORDINARY DIFFERENTIAL EQUATION WITHOUT TURNING POINTS
在线阅读 下载PDF
导出
摘要 In this paper we consider a quasilinear second order ordinary diferential equation with a small parameter Firstly an approximate problem is constructed. Then an iterative procedure is developed. Finally we give an algorithm whose accuracy is good for arbitrary e>0 . In this paper we consider a quasilinear second order ordinary diferential equation with a small parameter Firstly an approximate problem is constructed. Then an iterative procedure is developed. Finally we give an algorithm whose accuracy is good for arbitrary e>0 .
作者 林平 苏煜城
机构地区 Nanjing University
出处 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1989年第11期1005-1010,共6页 应用数学和力学(英文版)
  • 相关文献

参考文献2

  • 1M. K. Kadalbajoo,Y. N. Reddy. Initial-value technique for a class of nonlinear singular perturbation problems[J] 1987,Journal of Optimization Theory and Applications(3):395~406
  • 2Koichi Niijima. On a difference scheme of exponential type for a nonlinear singular perturbation problem[J] 1985,Numerische Mathematik(4):521~539

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部