摘要
本文采用压缩最小二乘估计B∧(m)来估计设计阵呈病态时的增长曲线模型回归系数阵B.通过m值的选取,可使β^(m)=Vec(B∧(m))的均方误差小于β=Vec(B)的LSEβ∧的均方误差.证明了β∧(m)具有可容许性、抗干扰性和有效性,并给出了实际应用中选取m值的方法.
In this paper, compression least squares estimate B∧(m) of the regression coefficient B is considered when the design matrix presents ill condition in growth curve model. The mean square error of the estimate β∧(m)=Vec(B(m)) is less than the mean square error of least squares estimate β∧ of the regression coefficient β =Vec(B) by choosing the parameter m. Admissibility, numerical stability and relative efficiency of β∧(m)are proved. The method of determining in value for practical use is also given.
出处
《广西民族大学学报(自然科学版)》
CAS
1997年第2期13-18,52,共7页
Journal of Guangxi Minzu University :Natural Science Edition
关键词
增长曲线模型
最小二乘估计
压缩最小二乘估计
均方误差
growth curve model
least squares estimate
compression least squares estimate
mean square error