期刊文献+

基于软测量理论的BOD在线检测仪研究 被引量:2

On the Online Monitor of BOD Based on Soft Sensing Method
在线阅读 下载PDF
导出
摘要 为了实现污水处理BOD在线检测,建立了以劳伦斯麦卡蒂公式为基础的软测量机理模型,采用限定记忆最小二乘算法对机理模型进行误差补偿,以提高模型的计算精度。设计了基于ATMEGA1280单片机的系统主控制器,采用模块化软件设计理念,利用AVR Studio开发环境,编程实现数据采集、软测量、液晶显示、数据存储、打印驱动等功能。此仪表已在工业现场得到应用。 For the online monitor of BOD,the soft sensing mechanism model is established based on the Lawrence McCarty formula,the error expiation,computed using least square method with restricted memory,is added to the mechanism model for improving the computing precision.The main controller about ATMEGA1280 singlechip is designed,the software is programmed by using the blocking software designing method and the integrated development environment of AVR Studio.The online monitor of BOD has many functions such as data acquisition,soft sensing computing,LCD display,data storing,printing,et al,and is being applied to the industrial working field.
出处 《控制工程》 CSCD 北大核心 2010年第S1期90-92,136,共4页 Control Engineering of China
基金 北京市自然科学基金资助项目(4062011) 北京市高校拔尖创新人才计划基金资助项目(200589) 北京市优秀人才项目 北京市教育委员会科技发展基金资助项目(KM200310011040)
关键词 软测量 机理模型 限定记忆最小二乘 AVR单片机 BOD在线检测 soft sensing mechanism model least square method with restricted memory AVR singlechip online monitor of BOD
  • 相关文献

参考文献1

二级参考文献49

共引文献101

同被引文献36

  • 1朱学峰,黄道平,李艳.污水处理过程的控制与优化[J].自动化博览,2009,0(S1):11-15. 被引量:2
  • 2范昕炜,杜树新,吴铁军.粗SVM分类方法及其在污水处理过程中的应用[J].控制与决策,2004,19(5):573-576. 被引量:15
  • 3王正祥,刘载文,薛福霞.污水处理过程的软测量技术[J].北京工商大学学报(自然科学版),2005,23(3):31-34. 被引量:2
  • 4DE LA FUENTE M J, VEGA P. A Neural networks based approach for fault detection and diagnosis:application to a real process[C]//Proceedings of the 4th IEEE Conference on Control Applications (CCA 1995). 1995:188-193.
  • 5LEE H J, AHN B S, PARK Y M. A fault diagnosis expert system for distribution substations[J]. IEEE Trans. on Power Delivery, 2000, 15(1):92-97.
  • 6TIPPING M E. The relevance vector machine[J]. Advances in Neural Information Processing Systems, 1999, 12(3):652-658.
  • 7TIPPING M E, FAUL A C. Fast marginal likelihood maximization for sparse bayesian models[C]//Proc. 9th International Workshop on Artificial Intelligence and Statistics. Key West, 2003:3-6.
  • 8GALAR M, FERNANDEZ A, BARRENECHEA E, et al. An over view of ensemble methods for binary classifiers in multi-class problems:experimental study on one-vs-one and one-vs-all schemes[J]. Pattern Recognit, 2011, 44(8):1761-1776.
  • 9HSU C W, LIN C J. A comparison of methods for multiclass support vector machines[J]. IEEE Trans. Neural Netw., 2002, 3(2):415-425.
  • 10HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine:a new learning scheme of feedforward neural networks[C]//Proceedings of 2004 IEEE International Joint Conference on Neural Networks. 2004:985-990.

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部