期刊文献+

基于三角形单元的时域有限积分方法研究 被引量:2

Researches on Finite Integration Time Domain Method Based on Triangular Cells
在线阅读 下载PDF
导出
摘要 针对二维复杂结构电磁场计算问题,本文研究了基于三角形单元的时域有限积分方法。将该方法和时域有限差分方法应用于求解半径r=0.085m的理想圆波导对应于TM01模式的截止频率,结果显示时域有限积分方法计算得到的结果与理论值之间的相对误差小于时域有限差分方法计算的结果与理论值之间的相对误差,验证了该方法的优越性。 In order to simulate the electromagnetic fields with complex structure in two dimensional,the Finite Integration Time Domain(FITD)method based on triangular cells was studied.Finite Difference Time Domain(FDTD)method and FITD were applied to compute the cut-off frequency corresponding to the mode of ideal circular waveguide with the radius of 0.085m.The results show that the relative error between results computed by FITD method and the theoretical value is smaller than that between results computed by FDTD method and the theoretical value,which proved the superiority of the FITD method.
出处 《微波学报》 CSCD 北大核心 2010年第S1期83-87,共5页 Journal of Microwaves
关键词 复杂结构 电磁计算 时域有限积分方法 截止频率 electromagnetic computation complex structure finite integration time domain cutoff frequency
  • 相关文献

参考文献5

二级参考文献9

  • 1YEE K S. Numerical sdution of initial houndary value problems involving Maxwell' s equations in isotropic media[J].IEEE Trans Antennas Propagat, 1966,14 (1) : 302-307.
  • 2XIAOLEI Z, KENNETH K M. Time - dcmain finite diffevene approach to the Calcalation of the fiequency-dependent Charactenstis of microstrip discontinuities[J]. IEEE MTT, 1988,36(12) : 1 775-1 787.
  • 3JOHN B.Schneider implementation of transparent sources in FDTD simulations[J ]. IEEE Trans Antennas Propagat,1998,46(8) :1 159-1 167.
  • 4王建国,计算物理,1995年,12卷,1期,10页
  • 5王建国,抗核加固,1995年,12卷,2期,66页
  • 6Xiao S,IEEE Microw Guided Wave Lett,1992年,2卷,5期,165页
  • 7Z Xiaolei,IEEE Trans MTT,1988年,36卷,12期,1775页
  • 8周晓军,喻志远,林为干,李艳明.2D-FDTD法计算波导截止频率的激励源设计[J].红外与毫米波学报,1998,17(3):236-240. 被引量:5
  • 9崔芙蓉,季飞,胡斌杰,赖声礼.FDTD法计算波导截止频率时激励源的优化设计[J].华南理工大学学报(自然科学版),2000,28(9):40-44. 被引量:3

共引文献7

同被引文献7

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部