期刊文献+

一类不确定线性周期离散时间系统的分析与控制 被引量:3

Analysis and Control of a Class of Uncertain Linear Periodic Discrete-Time Systems
在线阅读 下载PDF
导出
摘要 讨论具有参数区间不确定性的线性周期离散时间系统的反馈控制问题.首先进行系统的鲁棒稳定性分析和镇定研究,分别给出了基于线性矩阵不等式的系统渐近稳定和状态反馈镇定的条件.接着研究系统的L2-增益分析和控制综合问题.对于L2-增益分析问题,得到一个基于线性矩阵不等式的条件,在该条件下,具有参数不确定性的线性周期自治系统渐近稳定,且有小于γ的L2-增益.对于控制综合问题,导出基于线性不等式的条件,由该条件可以得到一个状态反馈器,使得闭环系统渐近稳定,且有小于γ的L2-增益.所有这些条件都是充分必要的. Feedback control problems for linear periodic systems(LPSs) with interval-type parameter uncertainties are studied in the discrete-time domain. First, the stability analysis and stabilization problems were addressed. Conditions based on linear matrices inequality for asymptotical stability and state feedback stabilization respectively were given. Problems of L2-gain analysis and control synthesis problems were studied. For the L2- gain analysis problem, an LMI-based condition was obtained such that the autonomous uncertain LPS is asymptotically stable and has an L2-gain smaller than a positive scalar gamma. For the control synthesis problem, an LMI-based condition was derived to build a state feedback controller ensuring the closed-loop system is asymptotically stable and Ires an L2- gain smaller than a positive scalar gamma. All the conditions are necessary and sufficient.
作者 孙凯 谢广明
出处 《应用数学和力学》 EI CSCD 北大核心 2009年第4期443-456,共14页 Applied Mathematics and Mechanics
基金 国家自然科学基金资助项目(6077408960404001)
关键词 线性周期系统 参数不确定性 鲁棒稳定性 线性矩阵不等式 状态反馈 镇定 L2-增益 linear periodic system parameter uncertainty robust st,~bility linear matrix inequality (LMI) state feedback stabilization L2-gain
  • 相关文献

参考文献15

  • 1Bittanti S. Deterministic and stochastic linear periodic systems[A]. In: Bittanti S, Ed. Time Series and Linear Systems[ C]. Berlin: Springe-Verlag, 1986, 141-182.
  • 2Bittanti S, Bolzem P, Colaneri P. Stability analysis of linear periodic systems via the Lyapunov equation[A]. In: Ljung L, Strom K J, Eds. Proceedings of the 9th IFAC World Cangress[ C]. Vol 1.Budapest, Hungary, Oxford: Pergmon Press, 1984, 169-173.
  • 3Kono M. Eigenvalues assignment in linear periodic discrete-time system[ J]. International Journal of Control, 1980,32( 1 ) : 149-158.
  • 4Hemanadez V, Urbaao A M. Pole-placement problem for discrete-time linear periodic systems[ J]. International Journal of Control, 1989,50( 1 ) : 351-371.
  • 5Grasselli O M. Canonical decomposition of linear periodic discrete-time systems[J]. International Journal of Control, 1984,48(1) :201-214.
  • 6Bittanti S, Bolzemm P. Stabilizability and detectability of linear periodic systems [ J ]. Systems and Control Letters, 1985,6(2) : 141-145.
  • 7Bittanti S, Colaneri P,De Nicolao G. Discrete-time linear periodic systems: a note on the reachability and controllability interval length[ J]. Systems and Control Letters, 1986,8( 1 ):75-78.
  • 8Bolzem P, Colaneri P. Inertia theorems for the periodic Lyapunov difference equation and the periodic Riccati difference equation[ J]. Linear Algebra Appl, 1987,85( 1 ) :249-265.
  • 9Chert T, Qiu L. Linear periodically time-varying discrete-time systems: aliasing and LTI approximalions[J]. Systems and Control Letters, 1997,31)(5) :225-235.
  • 10XIE Li-hua, de Souza C E. H∞ state estimation for linear periodic systems[ J]. IEEE Transavtions on Automatic Control, 1993,38( 11 ) : 1704-1707.

同被引文献10

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部