期刊文献+

基于图像边缘特征的SSDA算法 被引量:4

A SSDA Based on Image Edge Features
在线阅读 下载PDF
导出
摘要 从红外图像的特点出发,通过对SSDA算法(序列相似性检测算法)的分析研究,以及对图像边缘检测算子-Canny算子的研究,提出了一种基于图像边缘特征的快速SSDA算法。该算法充分利用了图像的边缘特征和灰度信息,实验证明该算法有很好的实时性和精确度。 In view of the characteristics of the infrared image, the paper analyzes the algorithm of SSDA and edge detection using Canny. An improved SSDA is proposed, which makes full use of edge features and gray scale information of the image. Tests show that the algorithm is accurate and has good real-timeness.
出处 《电子科技》 2009年第3期16-18,共3页 Electronic Science and Technology
关键词 相关跟踪 SSDA CANNY算子 自适应阈值 correlative tracking SSDA Canny algorithm auto-adjust threshold
  • 相关文献

参考文献7

二级参考文献31

共引文献80

同被引文献36

  • 1王立新,刘彤宇,李阳.SSDA图像匹配算法的研究及实现[J].光电技术应用,2005,20(3):53-55. 被引量:37
  • 2吴培景,陈光梦.一种改进的SSDA图像匹配算法[J].计算机工程与应用,2005,41(33):76-78. 被引量:30
  • 3王丽丹,华顺刚,刘红卫.自适应阈值SSDA图像匹配拼接算法的研究[J].光电技术应用,2006,21(3):54-57. 被引量:5
  • 4Shoichi ARAKI, Takashi MATSUOKA, Naokazu YOKOYA, et al. Real-time tracking of multiple moving object contours in a moving camera image sequence[J].IEICE TRANS. INF. &SYST, 2000, E83-D(7): 1583 1591.
  • 5Shi J. and Tomasi C. Good features to track[C]. In Proc. of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1994: 593-600.
  • 6Hiroki Sugano, Ryusuke Miyamoto. Parallel Implementation of Good Feature Extraction for Tracking on the Cell Processor with of Fifth International Information Hiding and 1326-1329. OpenCV Interface[C]. In Proc. Conference on Intelligent Multimedia Signal, 2009:.
  • 7D. I. Barnea, H F Silverman. A Class of Algorithms for Fast Digital Registration[J]. IEEE Transactions on Computers C-21, 1972:179 -186.
  • 8RUDIN L I,OSHER S,FATEMI E.Nonlinear total variation based noise removal algorithms[J].Physics D,1992,60:259-268.
  • 9ALVAREZ Luis,LIONS Pierre Louis,MOREL Jean Michel.Image selective smoothing and edge detection by nonlinear diffusion[J].SIAM Journal of Numerical Analysis,1992,29(3):845-866.
  • 10CHAN T F,GOLUB G,MULET P.A nonlinear primaldual method for total variation-based image restoration[J].SIAM J.Sci.Comp.,1999,20:1964-1977.

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部