期刊文献+

基于图像块分类的加权结构相似度 被引量:3

Weighted Structural Similarity Based on Block Classification of Image
在线阅读 下载PDF
导出
摘要 基于结构信息的图像质量评价方法——结构相似度(SSIM)方法计算简单、性能优越,但该方法仅简单地将各子块SSIM的平均值作为整幅图像的平均结构相似度(MSSIM),而人眼对图像不同区域的视觉灵敏度不同.为此,文中提出了一种基于图像块分类的加权平均结构相似度(WSSIM)的图像质量评价方法,即先将图像分块并将子块区分成边缘块、细节块和平滑块三类,然后对不同类型块的SSIM值赋予不同的权值,最后计算得到整幅图像的WSSIM.实验结果证明,文中方法明显优于MSSIM和基于方差加权的SSIM. Although the Structural Similarity (SSIM) method, a structural information-based method for image quality assessment, performs well with low computational complexity, it is still of some disadvantages because it simply takes the average SSIM of sub-blocks as the mean SSIM (MSSIM) of the whole image without considering the difference of human visual sensitivity in different image areas. In order to solve this problem, this palper proposes a block classification-based image quality assessment method named Weighted Structural Similarity (WSSIM). In this method, an image is separated into some blocks that are further divided into edge blocks, detail blocks and smooth blocks, and the SSIMs of different types of blocks are weighted with different values to calculate the WSSIM of the whole image. Experimental results indicate that the proposed method is superior to the MSSIM method and the variance-based weighted SSIM.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第1期42-47,共6页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(60402015) 广东省自然科学基金资助项目(06025642)
关键词 图像质量 评价 结构相似度 块分类 加权平均 人眼视觉系统 image quality assessment structural similarity block classification weighted average human visual system
  • 相关文献

参考文献9

  • 1Eskicioglu A M, Fisher P S. Image quality measures and their performance [ J ]. IEEE Trans on Communications, 1995,43(12) :2959-2965.
  • 2Wang Zhou, Bovik A C, Sheikh H R. Image quality assessment : from error visibility to structural similarity [ J ]. IEEE Transactions on Image Processing, 2004, 13 ( 4 ) : 600-612.
  • 3Wang Zhou, Shang Xin-li. Spatial pooling strategies for perceptual image quality assessment [C]//Proe of IEEE Int Conf on Image Proc. Atlanta: IEEE,2006:2945-2948.
  • 4Koumaras Harilaos, Pliakas Thomas, Kourtis Anastasios. A novel method for pre-encoding video quality prediction [ J ]. Mobile and Wireless Communications Summit,2007,1(5) :1-4.
  • 5Kalpana Seshadrinathan, Boivk A C. A structural similarity metric for video based on motion models [ C ] //Proc of IEEE International Conference on Acoustics, Speech and Signal Processing. Honolulu : IEEE, 2007 : 869- 872.
  • 6杨春玲,陈冠豪,谢胜利.基于梯度信息的图像质量评判方法的研究[J].电子学报,2007,35(7):1313-1317. 被引量:62
  • 7Wang Zhou, Watson A B, Sheikh H R. Image and video quality assessment research at LIVE [ EB/OL]. [ 2007- 11-03 ]. hnp://live. ece. utexas. edu/research/quality/.
  • 8陆旭光,汪岳峰,胡文刚,潘攀.基于视觉感兴趣区的图像质量评价方法[J].微计算机信息,2005,21(10X):95-96. 被引量:16
  • 9Video Quality Experts Group. Final report from the video quality experts group on the validation of objective models of video quality assessment [ EB/OL ]. [ 2000- 03- 05 ]. http ://www. vqeg. org/.

二级参考文献12

  • 1Claudio M. Privitera and Lawrence W. Stark. Algorithm for Defining Visual Regions-of-Interest: Comparison with Eye Fixations. IEEE :Transactions on Pattern Analysis and Machine Intelligence. VOL.22, NO.9SEPTEMBER 2000.
  • 2J L Mannos,J D Sakrison.The effects of a visual fidelity criterion on the encoding of images[J].IEEE Transactions on Information Theory,1974,20(4):525-536.
  • 3Sakrison D.On the role of the observer and a distortion mea-sure image transmission[J].IEEE Transactions on Communication,1977,25(11):1251-1267.
  • 4A B Watson.Digital Images and Human Vision[M].Cambridge,Massachusetts:The MIT Press,1993.179-206.
  • 5J Lubin.Vision Models for Target Detection and Recognition[M].Singapore:World Scientific Publishing,1995.245-283.
  • 6Sarnoff Corporation,JNDmetrix Technology[OL].Evaluation Version available:http://www.sarnoff.com/products-services/video-vision/jndmetrix/downloads.asp,2003.
  • 7VQEG,Final report from the video quality experts group on the validation of objective models of video quality assessment[OL].http://www.vqeg.org/,Mar.2000.
  • 8WANG Z,BOVIK A C,Lu L.Why is image quality assessment so difficult[A].IEEE International Conference Acoustics,speech,and Signal Processing[C].Orlando,2002.3313-3316.
  • 9WANG Z,BOVIK A C,SHEIKH H R.Image quality assessment:from error visibility to structural similarity[J].IEEE Transactions on Image Processing,2004,13(4):600-612.
  • 10Xiao-zhou Pan,Chun-ling Yang.An improved structural similarity for image quality assessment[A].Proc.of SPIE[C].Wuhan,China,2005,60441I-1-6044lI-9.

共引文献75

同被引文献31

  • 1杨春玲,陈冠豪,谢胜利.基于梯度信息的图像质量评判方法的研究[J].电子学报,2007,35(7):1313-1317. 被引量:62
  • 2WANG ZHOU, WU GUIXING, SHEIKH H R, et al. Quality-aware images[J].IEEE Transactions on Image Processing, 2006, 15(6):1680-1689.
  • 3WANG ZHOU, BOVIK A C, LU LIGANG. Why is image quality assessment so difficult?[C]// IEEE International Conference on Acoustics, Speech, and Signal Processing. Piscataway: IEEE, 2002,4, 3313-3316.
  • 4NILL N B, BOUZAS B H. Objective image quality measure derived from digital image power spectra[J].IEEE Signal Processing Letters, 2002,9(3): 388-392.
  • 5WANG ZHOU, BOVIK A C, SHEIKH H R, et al. Image quality assessment:from error visibility to structural similarity[J].IEEE Transactions on Image Processing, 2004,13(4): 600-612.
  • 6MORRONE M C, ROSS J, BURR D C, et al. Mach bands are phase dependent[J].Nature, 1986, 324(6049): 250-253.
  • 7MORRONE M C, OWENS R A. Feature detection from local energy[J].Pattern Recognition Letters, 1987, 6(5): 303-313.
  • 8KOVESI P. Image features from phase congruency[J].Journal of Computer Vision Research, 1999, 1(3): 1-26.
  • 9Laboratory for Image and Video Engineering. et al. Image and video quality assessment at LIVE[EB/OL]. [2011-11-19]. http://live.ece.utexas.edu/research/quality.
  • 10Wang Z,Wu G,Sheikh H R,et al.Quality-aware images[J].IEEE Transactions on Image Processing,2006,15 (6):1680-1689.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部