期刊文献+

基于密度加权的粗糙K-均值聚类改进算法 被引量:25

Improved Rough K-means Clustering Algorithm with Weight Based on Density
在线阅读 下载PDF
导出
摘要 针对粗糙K-均值聚类算法中类均值计算式的特点,提出了一种改进的粗糙K-均值算法。改进后的算法基于数据对象所在区域的密度,在类的均值计算过程中对每个对象赋以不同的权重。不同测试数据集的实验结果表明,改进后的粗糙K-均值算法提高了聚类的准确性,降低了迭代次数,并且可以有效地减小孤立点对聚类的影响。 According to the feature of the calculation of means in Rough K-means algorithm, an improved Rough K- means algorithm was proposed. The new algorithm introduces weights to the calculation of means, which is based on the density of each point. The experiments show that the new algorithm improves the clustering accuracy and reduces the iteration times as well as the outliers' influence.
出处 《计算机科学》 CSCD 北大核心 2009年第3期220-222,共3页 Computer Science
基金 国家自然科学基金项目(60775036 60475019) 高等学校博士学科点专项科研基金(20060247039)资助
关键词 聚类算法 粗糙K-均值 密度 孤立点 Clustering algorithm, Rough K-means, Density, Outlier
  • 相关文献

参考文献10

  • 1孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008(1):48-61. 被引量:1083
  • 2Pawlak Z. Rough sets. International Journal of Information and Computer Sciences, 1982,11 : 145-172
  • 3Lingras P, West C. Interval set clustering of web users with rou - gh k-means. Journal of Intelligent Information Systems, 2004,23 (1):5-1643
  • 4Wang Ruizhi, Miao Duoqian, Li Gang, et al. Rough Overlapping Biclustering of Gene Expression Data//Proceedings of the 7th IEEE International Conference on Bioinformatics and Bioengi- neering. 2007:828-834
  • 5Peters G. Some refinements of rough k-means clustering. Pattern Recognition, 2006,39 (8) : 1481-1491
  • 6Mitra S. An evolutionary rough partitive clustering. Pattern Recognition Letters, 2004,25 (12) : 1429-1449
  • 7Peters G, Lampart M. A Partitive Rough Clustering Algorithm. Rough Sets and Current Trends in Computing,2006,4259(1):658
  • 8Davies D, Bouldin D. A Cluster Separation Measure. IEEE Trans, Pattern Anal, 1979,1 (2) : 224-227
  • 9Blake C L, Merz C J. UCI repository of learning databases, http://www. ics. uci. eud/-mlearn/MLRepository.html
  • 10Sun Y, Zhu Q M, Chen Z X. An iterative initial-points refinement algorithm for categorical data clustering. Pattern Recognition Letters, 2002,23 (7) : 880-883

二级参考文献1

共引文献1082

同被引文献205

引证文献25

二级引证文献152

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部