期刊文献+

基于统计特征的轮胎纹理缺陷在线检测 被引量:8

Defects on-line detection of tire textures based on statistical features
原文传递
导出
摘要 根据轮胎X光纹理缺陷区域灰度及灰度分布异常的特点,研究了一种通过分析统计特征进行在线缺陷检测的方法。在轮胎X光纹理灰度分布模型基础上,采用正则化预处理去除背景噪声,然后进行图像分块,分别计算每块的灰度均值和方差,并采用双线性插值运算形成均值图像和方差图像,再通过二值化实现缺陷检测。实验表明,与人工检测方法进行对比,该方法误判率低,检测精度高,并且运算速度快,能满足在线检测要求。 According to the abnormality of gray mean and gray distribution of defect region in tire X-ray texture images, an approach based on analysis of statistical teatures is proposed to implement on-line detection ot texture defects. Based on the gray distribution model of tire X-ray texture, the background noise of image is eliminated by normalization preprccessing. Image is divided into blocks, and then gray mean and variance of each block are computed. The mean image and variance images are formed by bilinear interpolation operation. At last, defect detection is achieved by binary processing of mean image and variance image. Compared to traditional manual detecting, experimental results show that lower rate of ntis-detection, higher precision and speed are achieved by this method to meet the demand of on-line detection.
出处 《光学技术》 CAS CSCD 北大核心 2009年第1期60-62,66,共4页 Optical Technique
基金 国家科技支撑计划资助项目(2007BAF14B03)
关键词 纹理缺陷 统计特征 正则化 二值化 在线检测 texture defects statistical features normalization binary processing on-line detection
  • 相关文献

参考文献11

二级参考文献23

  • 1周贤,刘义伦,龚海飞,赵先琼.碳素材料内部缺陷检测方法的探讨[J].无损检测,2005,27(3):132-134. 被引量:7
  • 2J A Modestino,J Zhang.A markov random field model based approach to image interpretation[J].IEEE Tran On Pattern Analysis and Machine Intelligence,1992,14(6):606-615.
  • 3N Kamath,K.Sunil Kumar,U B Desai.Joint segmentation and image interpretation using hidden Markov models[A].Proc of the Int Conf on Pattern Recognition[C].Brisbane,Australia,1998,2:1840-1842.
  • 4Belhadj Ziad,Bouhlel Nizar,Sevestre Ghalila Sylvie,Boussema Mohamed Rached.Heterogeneous SAR Texture Characterization By Means Of Markov Random Fields[A].IEEE 2000 International Geoscience and Remote Sensing Symposium Proceedings (IGARSS′2000)[C].Honolulu Hawaii,2000,2:579-581.
  • 5Rupert D Paget.Nonparametric Markov Random Field Models for Natural Texture Images[D].The University of Queensland,1999.
  • 6S C Liew,H Lim,L K Kwoh,G K Tay.Texture analysis of SAR images[A].IEEE 1995 International Geoscience and Remote Sensing Symposium Proceedings (IGARSS′1995)[C].Firenze,Italy,1995,2:1412-1414.
  • 7Robert M Haralick,K Shanmugam,Its′hak Dinstein.Texture features for image classification[J].IEEE Trans on Systems,Man and Cybernetics,1973,3(6):610-621.
  • 8Dutra LV,R Huber.Feature extraction and selection for ERS-1/2 InSAR classification[J].International Journal of Remote Sensing,1999,20(5):993-1016.
  • 9Leen-Kiat Soh,Costas tsatsoulis.Segmentation of satellite imagery of natural scenes using data mining[J].IEEE Transactions on Geoscience and Remote Sensing,1999,37(2):1086-1099.
  • 10John R Smith,Shih-Fu Chang.Automated binary texture feature sets for image retrieval[A].IEEE International.Conference on Acoustics,Speech,and Signal Processing[C].Atlanta,GA,USA,1996,4:2239-2242.

共引文献259

同被引文献92

引证文献8

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部