期刊文献+

考虑随从力作用的运动粘弹性板的动力稳定性 被引量:6

DYNAMIC STABILITY OF MOVING VISCOELASTIC PLATE SUBJECTED TO FOLLOWER FORCE
原文传递
导出
摘要 从二维粘弹性微分型本构关系出发,建立了运动Kelvin-Voigt粘弹性矩形薄板受切向均布随从力作用下的运动微分方程,采用归一化幂级数法,导出了四边简支运动粘弹性板在随从力作用下的复特征方程。分析了系统的前三阶复频率与量纲一运动速度、量纲一延滞时间及量纲一随从力的变化关系。计算结果表明:量纲一延滞时间、量纲一运动速度和量纲一随从力对运动非保守粘弹性板的动力稳定性有着显著的影响。 Based on two dimensional viscoelastic differential constitutive relationships, the differential equation of motion of a moving viscoelastic plate constituted by Kelvin-Voigt model under the action of uniformly distributed tangential follower forces is established, and the complex characteristic equation for the moving viscoelastic plate with four edges simply supported and subjected to follower forces is derived by the normalized power series method. The variation relationship between the first three complex frequencies of the system and the dimensionless moving speed, delay time as well as follower force is analyzed. The numerical results show that the dimensionless delay time, moving speed and follower force have remarkable effects on dynamic behaviors and stability of the moving non-conservative viscoelastic plate.
出处 《工程力学》 EI CSCD 北大核心 2009年第1期25-30,共6页 Engineering Mechanics
基金 国家自然科学基金项目(10872163) 西安理工大学优秀博士学位论文研究基金项目
关键词 运动粘弹性板 随从力 幂级数法 临界载荷 耦合模态颤振 moving viscoelastic plate follower force power series method critical load coupled-mode flutter
  • 相关文献

参考文献3

二级参考文献22

  • 1A.S.J.阿尔赛夫,朱正佑.求解粘性流体和热迁移联立方程的迎风局部微分求积法[J].应用数学和力学,2004,25(10):1033-1041. 被引量:6
  • 2王鑫伟.微分求积法在结构力学中的应用[J].力学进展,1995,25(2):232-240. 被引量:90
  • 3徐士良.FORTRAN常用算法程序集[M].清华大学出版社,1995..
  • 4M A Langthjem, Y Sugiyama. Dynamic stability of viscoelastic beam under follower forces [J]. Journal of Sound and Vibration, 2000, 238(5): 809-851.
  • 5Y Sugiyama, H Kawagoe. Vibration and stability of elastic columns under the combined action of uniformly distributed vertical and tangential forces [J]. Journal of Sound and Vibration, 1975, 38(3): 341-355.
  • 6M A De Rosa, C Franciosi. Exact solutions for the analysis of a non-conservative beam system with general non-homogeneous boundary conditions [J]. Journal of Sound and Vibration, 1997, 206(3): 425-434.
  • 7常保平 肖灿章 计伊周.粘弹性基础上的粘弹性梁的动力特性[J].陕西机械学院学报,1988,4(4):97-106.
  • 8B Nageswara Rao, G Venkateswara Rao. Post-critical behavior of a tapered cantilever column under the tip-concentrated follower force with small damping [J]. Journal of Sound and Vibration, 1992, 154(2): 360-364.
  • 9R F Fung, J S Huang, W H Chen. Dynamic stability of viscoelastic beam subjected to harmonic and parametric excitations simultaneously [J]. Journal of Sound and Vibration, 1996, 198(1): 1-16.
  • 10赵凤群 王忠民.粘弹性梁在随从力作用下的稳定性分析[J].西安公路交通大学学报,1997,17:298-301.

共引文献52

同被引文献110

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部