期刊文献+

具有变态光子带隙结构的相对论Cherenkov辐射源的研究 被引量:1

Relativistic Cherenkov source with modified photonic band-gap cells
原文传递
导出
摘要 提出了一种变态光子带隙结构,研究了由这种结构构成的周期慢波系统的Cherenkov辐射源的特性.利用高频仿真软件以及三维粒子模拟软件对变态及常态光子带隙慢波系统中类TM01模的色散特性及注-波互作用物理过程进行了模拟研究.结果表明,在变态光子带隙慢波系统中,类TM01模纵向场分量沿角向分布均匀性得到明显改善,能有效抑制非对称模式,提高输出频谱纯度及注-波互作用效率. A relativistic Cherenkov source with slow wave system consisting of modified photonic band-gap cells is proposed and investigated. The high frequency structure simulator and three-dimensional particle-in-cell simulation code are used to study the dispersion characteristic of TM_ 01 -like mode and the interaction between electromagnetic wave and electron beam. The results show that, in the slow wave system with modified photonic band-gap cells, the TM_ 01 -like mode has much better azimuthal symmetry, the non-axisymmetry mode can be efficiently suppressed and the operation efficiency can be enhanced greatly.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2009年第2期1105-1109,共5页 Acta Physica Sinica
基金 国家自然科学基金(批准号:60571020) 国家重点基础研究发展计划(批准号:2007CB310401)资助的课题~~
关键词 Cherenkov辐射源 变态光子带隙结构 慢波系统 三维粒子模拟 Cherenkov source, modified photonic band-gap cells, slow-wave system, three-dimensional particle-in-cell simulation
  • 相关文献

参考文献12

二级参考文献57

  • 1[1]Laso M G,Lopetegi T,Erro M J et al 2000 Microwave and Optical Tech.Lett.24 357
  • 2[2]Radisic V,Qian Y,Coccioli R et al 1998 IEEE Microwave and Guided Wave Letters 8 69
  • 3[3]Yang F R,Ma K P,Qian Y et al 1999 IEEE Microwave Theory and Techniques 47 1509
  • 4[4]Coccioli R,Yang F R,Ma K P et al 1999 IEEE Microwave Theory and Techniques 47 2123
  • 5[5]Caloz C,Itoh T 2002 IEEE Microwave Theory and Techniques 50 2206
  • 6[6]Radisic V,Qian Y,Itoh T 1998 IEEE Microwave and Guided Wave Letters 8 13
  • 7[7]Rumsey I,Piket M,Kelly K 1998 IEEE Microwave and Guided Wave Letters 8 336
  • 8[8]Laso M G,Lopetegi T,Erro M J et al 2000 IEEE Microwave and Guided Wave Letters 10 220
  • 9[14]Yablonovitch E 1987 Phys.Rev.Lett.58 2059
  • 10[15]John S 1987 Phys.Rev.Lett.58 2486

共引文献316

同被引文献13

  • 1Hojo H,Mase A. Dispersion relation of electromagnetic waves in one-dimensional plasma photonic crystals[J].Plasma Fusion Research,2004,(02):89-90.
  • 2Sakai O,Sakaguchi T,Tachibana K. Verification of a plasma photonic crystal for microwaves of millimeter wavelength range using two-dimensional array of columnar microplasmas[J].Applied Physics Letters,2005.241505.
  • 3Qi Liangmei,Yang Ziqiang,Lan Feng. Dispersion characteristics of two-dimensinal unmagnetized dielectric plasma photonic crystal[J].Chinese Physics B,2010.034210.
  • 4Smirnova E I,Chen C,Shpiro M A. Simulation of photonic band gaps in metal rod lattices for microwave applications[J].Journal of Applied Physics,2002,(03):960-968.
  • 5Sirigiri J R,Kreischer K E,Machuzak J. Photonic-band-gap resonator gyrotron[J].PhysicalReview Letters,2001,(24):5628-5631.
  • 6Smirnova E I,Kesar A S,Mastovsky I. Demonstration of a 17-GHz,high-gradient accelerator with a photonic-band-gap structure[J].Physical Review Letters,2005.074801.
  • 7Brand S,Abram R A,Kaliteevski M A. Complex photonic band structure and effective plasma frequency of a two-dimensional array of metal rods[J].Physical Review B,2007.035102.
  • 8Shu Xiao,Mo Yuanlong. Study of open cavity filled with plasma density grating[J].IEEE Transactions on Plasma Science,1999,(05):1495-1500.
  • 9Gao Xi,Yang Ziqiang,Xu Yong. Dispersion characteristics of a slow wave structure with metal photonic band gap cells[J].NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS,2008,(03):292-296.
  • 10章海锋,马力,刘少斌.温度、密度对非磁化等离子体光子晶体禁带特性的影响[J].南昌大学学报(理科版),2007,31(6):540-544. 被引量:11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部