期刊文献+

全方位移动机械手运动控制Ⅱ——鲁棒控制 被引量:5

Motion Control of Omnidirectional Mobile Manipulators(PartⅡ)——Robust Control
在线阅读 下载PDF
导出
摘要 研究考虑全方位移动机械手系统动力学未知情况下的鲁棒控制问题。首先,在原有动力学模型的基础上,建立考虑外部干扰的移动机械手动力学模型。利用神经网络无穷逼近能力,设计估计器对系统结构不确定性进行在线辨识。然后,提出一种不依赖神经网络先验知识的鲁棒轨迹跟踪控制策略,从理论上证明其稳定性,并且该控制器能够有效阻止非模型有界干扰的影响,实现了对全方位移动机械手系统中不同动力学特性的移动平台和机械臂的协调控制。同时,为了减轻神经网络在线学习的计算量,提出一种分离式的神经网络结构,对系统结构不确定项中的两个独立矢量进行分别辨识,有效地提高了神经网络的训练效率。最后,通过计算机仿真结果验证了所提出控制律的有效性,能够快速稳定地实现全方位移动机械手系统的协调轨迹跟踪控制。 The robust control problem of mobile manipulators with unknown system dynamics is addressed. Firstly, the dynamics of mobile manipulator with external disturbances is constructed based on the primary system dynamics. In virtue of the infinite approximation ability of neural network, an estimator is designed to on-line identify the uncertainties of system structure. Then a neural network robust control scheme without apriori knowledge is proposed. The controller stability is proved in theory and also has the capability of disturbance-rejection in the presence of time varying bounded disturbances. The coordinated control of different dynamics parts: mobile platform and manipulator, is achieved. In addition, in order to reduce the computation burden of the neural network, a partitioned neural network structure is proposed to identify the two separate vectors of the structure uncertainties respectively. The training efficiency of the neural network is highly improved. Finally, computer simulation results validate the effect of the proposed controller, which can cooperatively track the system trajectory quickly and stably.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2009年第1期42-49,共8页 Journal of Mechanical Engineering
基金 国家自然科学基金(60475030 60621001) 智能科学与技术联合实验室基金(JL0605)资助项目。
关键词 全方位移动机械手 神经网络 鲁棒控制 轨迹跟踪 Omnidirectional mobile manipulator Neural network Robust control Trajectory tracking
  • 相关文献

参考文献13

  • 1徐冬,赵冬斌,易建强,谭湘敏.全方位移动机械手运动控制Ⅱ——鲁棒控制[J].机械工程学报,2009,45(1):42-49. 被引量:5
  • 2KHAATIB O, YOKOI K, CHANG K, et al. Coordination and decentralized cooperation of multiple mobile manipulators[J]. International Journal of Robotic System, 1996, 13(11): 755-764.
  • 3TAN J D, XI N. Unified model approach for planning and control of mobile manipulators[C]//Proceedings of the 2001 IEEE International Conference on Robotics and Automation, May 21-26, 2001, Seoul, Korea. 2001: 3145-3152.
  • 4EGERSTEDT M, HU X M. Coordinated trajectory following for mobile manipulation[C]//Proceedings of the 2000 IEEE International Conference on Robotics and Automation, April 24-28, 2000, San Francisco, CA, USA. 2000:3479-3484.
  • 5WATANABE K, SATO K. Analysis and control for an omnidirectional mobile manipulator[J]. International Journal of Intelligent and Robotic System, 2000(3): 3-20.
  • 6LI Z J, GE S S, MING A G. Adaptive robust motion/ force control of holonomic-constrained nonholonomic mobile manipulators[J]. IEEE Transactions on Systems, Man. and Cybernetics, Part B, 2007, 37: 607-616.
  • 7WANG D, SOH Y C, CHEAH C C. Robust motion and force control of constrained manipulators by learning[J]. Automatica, 1995, 31(2): 257-262.
  • 8CHANG Y C. Intelligent robust control for uncertain nonlinear time-varying systems and its application to robotic systems[J]. IEEE Transactions on Systems, Man. and Cybernetics, Part B, 2005, 35:1108-1119.
  • 9LEWIS F L, JAGANNATHAN S, YESILDIREK A. Neural network control of robot manipulators and nonlinear systems[M]. London: Taylor and Francis, 1999.
  • 10LIN S, GOLDENBERG A A. Neural-network control of mobile manipulators[J]. IEEE Transactions on Neural networks, 2001, 12(5): 1121-1133.

二级参考文献13

  • 1KHAATIB O, YOKOI K, CHANG K, et al. Coordination and decentralized cooperation of multiple mobile manipulators[J]. International Journal of Robotic System, 1996, 13(11): 755-764.
  • 2TAN J D, XI N. Unified model approach for planning and control of mobile manipulators[C]//Proceedings of the 2001 IEEE International Conference on Robotics and Automation, May 21-26, 2001, Seoul, Korea. 2001: 3145-3152.
  • 3EGERSTEDT M, HU X M. Coordinated trajectory following for mobile manipulation[C]//Proceedings of the 2000 IEEE International Conference on Robotics and Automation, April 24-28, 2000, San Francisco, CA, USA. 2000:3479-3484.
  • 4WATANABE K, SATO K. Analysis and control for an omnidirectional mobile manipulator[J]. International Journal of Intelligent and Robotic System, 2000(3): 3-20.
  • 5LI Z J, GE S S, MING A G. Adaptive robust motion/ force control of holonomic-constrained nonholonomic mobile manipulators[J]. IEEE Transactions on Systems, Man. and Cybernetics, Part B, 2007, 37: 607-616.
  • 6WANG D, SOH Y C, CHEAH C C. Robust motion and force control of constrained manipulators by learning[J]. Automatica, 1995, 31(2): 257-262.
  • 7CHANG Y C. Intelligent robust control for uncertain nonlinear time-varying systems and its application to robotic systems[J]. IEEE Transactions on Systems, Man. and Cybernetics, Part B, 2005, 35:1108-1119.
  • 8LEWIS F L, JAGANNATHAN S, YESILDIREK A. Neural network control of robot manipulators and nonlinear systems[M]. London: Taylor and Francis, 1999.
  • 9LIN S, GOLDENBERG A A. Neural-network control of mobile manipulators[J]. IEEE Transactions on Neural networks, 2001, 12(5): 1121-1133.
  • 10HUI H, WOO P Y. Fuzzy supervisory sliding-mode and neural-network control for robotic manipulators[J]. IEEE Transactions on Industrial Electronics, 2006, 53(3): 929-940.

共引文献4

同被引文献55

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部