摘要
本文将基于边过程的围线追踪算法推广应用于四元树表示的二值图像,给出了一个对线性四元树表示二值图像实现围线追踪的算法.算法利用输入的四分形编码确定四分形左上及右下角处象素的位置坐标,由此确定图像中的所有非零边过程,再进行基于边过程的围线追踪.算法求得围线的树结构,表达了图像的拓扑性质,利用围线的树结构给出了一个计算图像的Euler数的非常简便的方法.
The crack based contour tracing algorithm is extended to binary images represented by linear quadtrees, and an algorithm for tracing contours on that kind of images is presented. In the suggested algorithm the quadrant codes of linear quadtrees are inputted and used to determine the locations of pixels in their north-west or southeast corner. Using these locations, all non-zero cracks are found out,then the crack based contour tracing can be executed. The tree structure of con-tours obtained with the algorithm represents the topological properties. An easy approach to compute Euler number of the images by means of the tree structure is given.
出处
《计算机学报》
EI
CSCD
北大核心
1998年第3期223-228,共6页
Chinese Journal of Computers
基金
国家自然科学基金
关键词
二值图像
线性四元树
围线追踪
EULER数
Binary image, linear quadtree, cracks, contour tracing, tree structure, Euler number