期刊文献+

基于神经网络的安全风险概率预测模型 被引量:9

Risk Probability Estimating Model Based on Neural Networks
在线阅读 下载PDF
导出
摘要 网络安全风险概率预测对分布式网络环境及其内在的不确定事件进行动态分析和评价,是构建网络安全保障体系的重要环节。深入研究网络态势感知中的特征提取、聚类分析、相似性度量和预测方法,提出了一种基于神经网络的安全风险概率预测模型。采用入侵检测数据进行了实例验证,仿真实验结果验证了风险预测方法的可行性与有效性。 Risk probability estimating analyzes the distributed network and assesses lnherenUy uncertain events and circumstances dynamically. And the estimating probability of security risk is an absolutely necessary step of developing network security protection system. The problems of feature extraction, cluster analysis, similarity measurement and estimation methods in network situation awareness were addressed. A risk probability assessment formula was proposed, and an estimating model adopting the neural networks was presented. An experiment based on DARPA intrusion detection evaluation data was given to support the suggested approach and demonstrated the feasibility and suitability for use.
出处 《计算机科学》 CSCD 北大核心 2008年第12期28-33,共6页 Computer Science
基金 国家自然科学基金(No.90104025,No.60603062) 国家重点基础研究发展计划(973)(No.2007CB310901) 湖南省自然科学基金(No.06JJ3035)
关键词 网络安全 风险概率 预测模型 神经网络 Network security, Risk probability, Estimating model, Neural networks
  • 相关文献

参考文献13

二级参考文献22

  • 1冯登国,张阳,张玉清.信息安全风险评估综述[J].通信学报,2004,25(7):10-18. 被引量:309
  • 2张永铮,云晓春,胡铭曾.基于特权提升的多维量化属性弱点分类法的研究[J].通信学报,2004,25(7):107-114. 被引量:35
  • 3Portnoy L,Eskin E,Stolfo S J.Intrusion detection with unlabeled data using clustering.In:Proceedings of ACM CSS Workshop on Data Mining Applied to Security (DMSA-2001),Philadelphia,PA,2001.
  • 4Eskin E,Arnold A,Prerau M.Geometric framework for unsupervised anomaly detection:detecting intrusions in unlabeled Data.To appear in Data Mining for Security Applications.Kluwer,2002.
  • 5KDD Cup 1999 Data.Available on:http://kdd.ics.uci.edu/databases/kddcup 99/kddcup99.html,August 2003.
  • 6Eskin E.Anomaly detection over noisy data using learned probability distributions.In:Proc 17th International Conf on Machine Learning,Morgan Kaufmann,San Francisco,CA,2000.255-262.
  • 7Eskin E. Anomaly detection over noisy data using learned probability distributions[C]. In: Proceedings of the Seventeenth International Conference on Machine Learning (ICML-2000),2000,June 29-July 02,255-262.
  • 8Portnoy L, Eskin E, Stolfo S J. Intrusion detection with unlabeled data using clustering[C]. In: Proceedings of ACM CSS Workshop on Data Mining Applied to Security (DMSA-2001).Philadelphia, PA: November 5-8, 2001.
  • 9Eskin E, Arnold A, Prerau M et al. A geometric framework for unsupervised anomaly detection: Detecting intrusions in unlabeled data[A]. In:Data Mining for Security Applications[M],Kluwer, 2002.
  • 10Lee W K, Stolfo S J, Mok K W. Mining in a data-flow environment: experience in network intrusion detection[C]. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD-99), August 1999.

共引文献409

同被引文献70

引证文献9

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部