期刊文献+

基于ICA与HMM的表情识别 被引量:22

Facial Expression Recognition Based on Independent Component Analysis and Hidden Markov Model
在线阅读 下载PDF
导出
摘要 独立分量分析(independent component analysis,ICA)是一种盲源分离的有效方法,为了进一步有效提取表情图像中隐藏的信息和提高表情识别率,可将它应用于人脸表情识别。由于脸部表情为人类情感、认知过程的研究提供了极为重要的测量依据,因此表情特征的提取和特征序列所代表的表情状态是表情识别过程中的重要步骤。为了更好地进行表情和情感的分类,提出了一种ICA结合隐马尔可夫模型(HMM)识别表情的情感分类系统,该系统首先利用ICA算法进行表情特征提取,为了加快特征提取的速度,这里采用了FastICA算法;然后通过7个训练好的HMM进行表情识别。实验结果显示,该系统使人脸表情识别的整体效果有了提高,取得了令人满意的效果,可以用来识别人脸表情。 As an effective approach of blind source separation (BSS), independent component analysis (ICA) is a recently developed method in facial expression recognition field, which is used to effectively extract the hidden information of expression images and can improve the rate of expression recognition. Facial expression provides a crucial measure for studies of human emotion, cognitive processes, and social interaction. The key focuses of facial expression recognition are the extraction of expression features and the expression states using features. This paper proposes an expression recognition system based on ICA and hidden markov model (HMM). The system includes two parts: First, it is applied to extraction of expression features using ICA algorithm. In this process it adopts FastlCA algorithm in order to increase the speed of feature extraction and its function is prior to primary component analysis (PCA). Second, it is applied to recognizing facial expression using seven HMMs its time efficiency is prior to support vector machine (SVM). Experimental results show that the system increases the whole effectiveness and accuracy of facial expression recognition, and prove that the algorithm is efficient and feasible.
出处 《中国图象图形学报》 CSCD 北大核心 2008年第12期2321-2328,共8页 Journal of Image and Graphics
基金 国家重点基础研究发展规划(973)项目(2002CB312200) 湖南省自然科学基金项目(06JJ50109)
关键词 盲源分离 独立分量分析 表情识别 隐马尔可夫模型 blind source separation, independent component analysis, expression recognition, hidden Markov model(HMM)
  • 相关文献

参考文献26

  • 1Ma L, Xiao Y, Khorasani K, et al. A new facial expression recognition technique using 2D DCT and k-means algorithm[A]. In: Proceedings of International Conference on Image Processing [ C ] , Singapore ,2004,2,1269 - 1272.
  • 2Kirby M, Sirovieh L. Application of the Karhunen-Loeve procedure for the characterization of human faces [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990,12 ( 1 ) : 103 - 108.
  • 3刘小军,王东峰,张丽飞,时永刚,邹谋炎.一种基于奇异值分解和隐马尔可夫模型的人脸识别方法[J].计算机学报,2003,26(3):340-344. 被引量:37
  • 4Duda R, Hart P, Stork D. Pattern Classification (second edition) [ M ]. New York : Wiley-lnterscience, 2000 : 114 - 139.
  • 5Zuo M J, Lin J, Fan X. Feature separation using ICA for a one- dimensional time series and its application in fault detection [ J ]. Journal of Sound and Vibration, 2005, 287 (3) :614 - 624.
  • 6Fellenz W A, Taylor J G, Tsapatsoulis N, et al. Comparing templatebased, feature-based and supervised classification of facial expressions form static images [ A ]. In: Proceedings of the 3rd International Muhiconference on Circuits, Systems ( IMACS), Communications and Computers[C], Athens, Greece, 1999:5331 -5336.
  • 7Chuang Chao-fa, Shih Frank Y. Recognizing facial action units independent component analysis and support vector machine [ J ]. Pattern Recognition, 2006,39 ( 9 ) : 1795 - 1795.
  • 8Wang Y, Ai H, Wu B, et al. Real time facial expression recognition with adaboost [ A ]. In: Proceedings of 17th IEEE International Conference on Pattern Recognition [ C ], Cambridge, UK, 2004,3 : 926 - 929.
  • 9Jing X Y, Tang Y Y, Zhang D. A Fourier-LDA approach for image recognition [ J ]. Pattern Recognition, 2005, 38(2) : 453 - 457.
  • 10AUdrin N, Smith A, Turnbull D. Classifying facial expression with radial basis function networks, using gradient descent and K-means [ EB/OL ] : http://www-cse, ucsd. edu/-atsmith/Project3_ 253. pdf.

二级参考文献18

  • 1洪子泉,杨静宇.基于奇异值特征和统计模型的人像识别算法[J].计算机研究与发展,1994,31(3):60-65. 被引量:49
  • 2高文.利用线画图象二维串的图象理解方法[J].计算机学报,1996,19(2):110-119. 被引量:1
  • 3高文,第二届智能接口与智能应用学术会议论文集,1995年
  • 4Huang C L,Pattern Recognit,1992年,25卷,1435页
  • 5Nicholas Roeder. LI Xiaobo. Accuracy analysis for facial feature detection, Pattern Recognition, 1996, 29(1): 143~157
  • 6Turk MA, Pentland A. Face recognition using eigenfaces. In: Proceedings of International Conference on Computer Vision and Pattern Recognition, Maui, HI, 1991. 586~591
  • 7Hong Z Q. Algebraic feature extraction of image recognition. Pattern Recognition, 1991, 24(3): 211~219
  • 8Yuille A, Hallinen P, Cohn D. Feature extraction from faces using deformable temples. International Journal of Computer Vision, 1992, 8(2):99~111
  • 9Baum L E, Petrie T. Statistical inference for probabilistic functions of finite Markov chains. The Annals of Mathematical Statistics, 1966, 37(11):1554~1563
  • 10Baum L E, Egon J A. An inequality with applications to statistical estimation for probabilistic functions of a Markov process and to a model for ecology. Bulletin of American Meteorological Society, 1967, 73(2): 360~363

共引文献77

同被引文献248

引证文献22

二级引证文献166

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部