期刊文献+

量子环面上斜导子李代数的不变对称双线性型和Leibniz二上同调群

Invariant Symmetric Bilinear Form and Leibniz Second Cohomology Group on the Lie Algebra of Skew Derivations over the Quantum Torus
在线阅读 下载PDF
导出
摘要 设p≠1为任意取定的正整数,q≠1为p次本原单位根.再设Γ1=(pZ)2\{(0,0)},Γ2=Z2\(pZ)2.记B=spanC{Lm,n|(m,n)∈Γ1■Γ2}为量子环面Cq[x±1,y±1]上的斜导子李代数,其中,基元满足的李关系为:当(m,n),(r,s)∈Γ2时,[Lm,n,Lr,s]=(qnr-qms)Lm+r,n+s;否则[Lm,n,Lr,s]=(nr-ms)Lm+r,n+s.本文给出了B的一个标准不变对称双线性型1ψ,并通过计算得到,李代数B的不变对称双线性型都是ψ1的常数倍.作者进一步证明了斜导子李代数B的系数在一维平凡表示C中的Leibniz二上同调群和它的二上同调群相同,即有HL2(B,C)=H2(B,C). Let p≠ 1 be a positive integer, and q≠ 1 be a p-th primitive root of unity. Let Γ1=(pZ)^2/{(0.0)),Γ2=Z^2/(pZ)^2.Denote B= spanc B=spanc{Lm.n|(m,n)∈Γ1UΓ2} the skew derivation Lie algebra over the quantum torus Cq[x^±1,y±1]. The Lie bracket is given by[Lm,n,Lr,s]=(nr-ms)Lm+r,n+s if (m,n),(r,s)∈Γ2 ,and[Lm,n,Lr,s]=(nr-ms)Lm+r,n+s, in other cases. In this paper,the author first gave a standard invariant symmetric bilinear form φ1 of B,and then obtained that any invariant symmetric bilinear form of B is a multiple of φ1. In section two,the author proved that the Leibniz second cohomology group of B with coefficients in the 1-dimensional trivial representation C is equal to the second cohomology group of B,i. e. , HL^2 (B, C)= H^2 (B,C).
作者 曾波
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第6期777-781,共5页 Journal of Xiamen University:Natural Science
基金 国家自然科学基金(10671160)资助
关键词 不变对称双线性型 Leibniz二上同调群 斜导子 量子环面 invariant symmetric bilinear form Leibniz second cohomology group skew derivation quantum torus
  • 相关文献

参考文献3

二级参考文献13

  • 1薛旻,林卫强.量子环面上斜导子李代数的自同构群[J].厦门大学学报(自然科学版),2005,44(1):5-9. 被引量:2
  • 2林卫强,谭绍滨.量子环面上斜导子李代数的表示[J].数学进展,2005,34(4):477-487. 被引量:10
  • 3Berman S, Gao Y, Krylyuk Y S. Quantum tori and thestructure of elliptic quasi-simple Lie algebras [J]. J.Funct. Anal., 1996, 135: 339-389.
  • 4Eswara Rao S. Representations of Witt algebras, Publ. Res. Inst. Math. Sci. 30(1994), 191-201.
  • 5Eswara Rao S. Irreducible representations of the Lie algebra of the diffeomorphisms of a d-dimensional torus[J]. J. Algebra, 1996, 182: 401-421.
  • 6Eswara Rao S, Moody R V. Vertex representations for N-toroidal Lie algebras and a generalization of the Virasoro algebra [J]. Commun. Math. Phys., 1994, 159: 239-264.
  • 7Eswara Rao S, K. Zhao. Highest weight irreducible representations of quantum tori [C]. Preprint, 2002.
  • 8Humphreys J E. Introduction to Lie Algebras and Representation Theory [M]. Springer-Verlag, Berlin/Heidelberg/New York, 1972.
  • 9Lin W, Tan S. Representations of the Lie algebra of derivations for quantum torus [C]. Preprint, 2002.
  • 10McConnell J C, Pettit J J. Crossed products and multiplicative analogues of Weyl algebras [J]. J. London Math. Soc., 1988, 38: 47-55.

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部