摘要
The microwave dielectric properties and microstructure of BaTi4.3ZnyO9.6+y +0.02 mol% SnO2+0.01 mol% MnCO3+x mol% Nb2O5(x=0-0.05, y=0-0.08) system ceramics were studied as a function of the amount of ZnO and Nb2O5 doped. Addition of (y=0-0.05) ZnO and (x=0-0.025) Nb2O5 enhanced the reactivity and decreased the sintering temperature effectively. It also increased the dielectric constant ε r and quality factor Q(=1/tan 8) of the system due to the substitution of Ti^4+ ions with incorporating Zn^2+and Nb^5+ ions, which was analyzed by the reaction ZnO+Nb2O5+ 3 TiTxTi →ZnTi+ 2NbTi+3TiO2. When the system doped with (y=0.05) ZnO and (x=0.025) Nb205 were sintered at 1 160 ℃ for 6 h, the εr. Qf0 value and rfwere 36.5, 42 000 GHz, and+1.8 ppm/℃, respectively, at 5 GHz.
The microwave dielectric properties and microstructure of BaTi4.3ZnyO9.6+y +0.02 mol% SnO2+0.01 mol% MnCO3+x mol% Nb2O5(x=0-0.05, y=0-0.08) system ceramics were studied as a function of the amount of ZnO and Nb2O5 doped. Addition of (y=0-0.05) ZnO and (x=0-0.025) Nb2O5 enhanced the reactivity and decreased the sintering temperature effectively. It also increased the dielectric constant ε r and quality factor Q(=1/tan 8) of the system due to the substitution of Ti^4+ ions with incorporating Zn^2+and Nb^5+ ions, which was analyzed by the reaction ZnO+Nb2O5+ 3 TiTxTi →ZnTi+ 2NbTi+3TiO2. When the system doped with (y=0.05) ZnO and (x=0.025) Nb205 were sintered at 1 160 ℃ for 6 h, the εr. Qf0 value and rfwere 36.5, 42 000 GHz, and+1.8 ppm/℃, respectively, at 5 GHz.
基金
the Natural Science Foundation of Tianjin (No. 06YFJMJC01000)