期刊文献+

自反Banach空间中一类广义集值强非线性变分不等式问题 被引量:3

Generalized Set-Valued Strongly Nonlinear Variational Inequalities in Reflexive Banach Spaces
在线阅读 下载PDF
导出
摘要 在自反Banach空间中引进并研究一类具有集值映射的广义强非线性变分不等式问题,并且证明了这类变分不等式解的存在性定理。结果修正、改进和推广了文献Cho Y.J等人的主要结果。 A new class of generalized strongly nonlinear variational inequalities with set - valued mappings is introduced and studied in reflexive Banach spaces, and the existence of solution for this class of variational inequalities is proved. The results revise and improve Cho Y. J's main results.
出处 《南昌大学学报(理科版)》 CAS 北大核心 2008年第4期335-338,共4页 Journal of Nanchang University(Natural Science)
基金 南昌工程学院青年基金资助项目(2006KJ032)
关键词 变分不等式 KKM映射 φ-g单调映射 松弛ψ-g单调映射 variational inequalities, KKM mapping, φ -g monotone mapping, relaxed ψ-g monotone mapping
  • 相关文献

参考文献8

  • 1Cho Y J, Fang Y P, Huang N J, Kim K H. Generalized Set -valued Strongly Nonlinear Variational Inequalities in Banach Spaces[ J ]. Korean Math Soc, 2003 (40) : 195 - 205.
  • 2Verma R U. Nonlinear Variational Inequalities on Convex Subsets of Banach Spaces [ J ]. Appl Math Lett, 1997 (10) :25 -27.
  • 3Noor M A. Generalized Set - valued Variational Inequalities [ J ]. Mathematical and Computer Modelling, 1997 (52) :3 -24.
  • 4丁协平.自反Banach空间内混合非线性似变分不等式解的算法[J].应用数学和力学,1998,19(6):489-496. 被引量:18
  • 5Fank. A Generalization of Tychonoff's Fixed Point Theorem[ J ]. Math Ann, 1961 (142) : 305 - 310.
  • 6Vasile I. Istratescu. Fixed Point Theory: An Introduction [ M ]. Dordrecht: Holland D Reidel pub Co, 1981.
  • 7刘理蔚.关于多值增生和多值单调映射的连续性[J].南昌大学学报(理科版),2004,28(1):17-18. 被引量:3
  • 8He X. On φ - strongly Accretive Mapping and Some Sot - valued Variational Problem [ J ]. Math Anal Appl, 2003, 277(2) :504 -511.

二级参考文献14

  • 1丁协平,Int J Comput Math Appl,1997年,34卷,9期,131页
  • 2丁协平,Appl Math Lett,1995年,8卷,1期,31页
  • 3Yao J C,Oper Res Lett,1994年,15卷,35页
  • 4丁协平,Colloq Math,1992年,63卷,2期,233页
  • 5Harker P T,Math Program B,1990年,48卷,161页
  • 6Zhou J X,J Math Anal Appl,1988年,132卷,213页
  • 7Chidume C E and Moore C. Steepest Descent Method for Equilibrium Points of Nonlinear System with Accretive Operators[J]. J Math Anal Appl, 2000, 245: 142 - 160.
  • 8Ding X P. Existence and Algorithm of Solutions for Generalized Mixed Implicit Quasi- variational Inequalities[J].Appl Math Comput, 2000, 113: 67 - 80.
  • 9Noor M A, Noor K I and Rassias Th M. Set - valued Resolvent Equations and Mixed Varitional Inequalities[J ]. J Math Anal Appl, 1998, 220:741 - 759.
  • 10Noor M A. Generalized Set - valued Variational Inclusions and Resolvent Equations[J ]. J Math Anal Appl, 1998,228: 206 - 220.

共引文献19

同被引文献21

  • 1王国俊,白永成.平移空间的线性结构[J].数学学报(中文版),2005,48(1):1-10. 被引量:32
  • 2杨万必,李永亮,秦宣华.关于Z-空间的性质[J].湖北民族学院学报(自然科学版),2005,23(4):330-331. 被引量:14
  • 3杨万必,秦宣华.Z-空间上的线性算子的性质[J].中南民族大学学报(自然科学版),2006,25(1):97-99. 被引量:22
  • 4成波,曹怀信.次范整线性空间中的逆算子定理和闭图像定理[J].西南师范大学学报(自然科学版),2006,31(4):35-39. 被引量:5
  • 5Cho Y J, Fang Y P, Huang N J, Kim K H. Generalized Set -valued Strongly Nonlinear Variational Inequalities in Banach Spaces[J].Korean Math Soc, 2003 (40) : 195 - 205.
  • 6Verma R U. Nonlinear Variational Inequalities on Convex Subsets of Banach Spaces [ J ]. Appl Math Lett, 1997,10 (2) :25 -27.
  • 7Liu L W, Li Y Q. On Generalized Variational Inclusion [ J ]. Math Anal Appl,2001,261:231 - 240.
  • 8Liu L W. An Existence Theorem for Solving the Set - valued Variational Inclusions [ J ]. Indian Pure Appl Math, 2004,35 (2) : 243 - 248.
  • 9Vasile I. Istratescu. Fixed Point Theory [ M ]. Dordrecht: Holland D Reidel pub Co, 1981.
  • 10Barbu V. Nonlinear Semigroups and Differential Equations in Banach Spaces [ M ]. Noordhoff, Leyden, The Netherland, 1975.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部