期刊文献+

修正遗传神经网络预测中厚板轧机轧制力 被引量:6

Application of Modified GA-ANN Network to Rolling Force Prediction
在线阅读 下载PDF
导出
摘要 在实际生产过程中,传统轧制力数学模型存在较大误差,影响计算精度.提出将BP网络与修正遗传算法相结合,利用BP网络的指导性搜索思想和遗传算法的全局搜索能力预测中厚板轧机轧制力,并建立预测模型.同时,根据模型编制相应的程序及界面.以邯钢中板厂、普阳中板厂现场数据为基础,通过数据优选,选择较优数据进行离线轧制力预测,预测精度优于传统的数学模型,预报精度的相对误差可以控制在4%以内,能够满足生产需要. In the process of real production, the calculation results by conventional models have relatively big errors in the prediction of rolling force. It is therefore suggested to combine the BP network with modified GA algorithm to develop a prediction model, i.e. , predicting the rolling force to be applied to medium thick plates by means of the guidable idea about search from BP network and the capability of global search from genetic algorithm. Moreover, the corresponding program and interface were given according to the prediction model. Based on the in-situ data taken from Handan and Puyang plate rolling mills, rome optimal data was selected to predict the off-line rolling force. The results showed that the predicted accuracy resulting from the model developed is higher than that from conventional models, i.e., the relative error is within 4 %, thus meeting the actual requirement for plate rolling.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第10期1438-1442,共5页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(50604006)
关键词 人工神经元网络 BP算法 遗传算法 轧制力预测 数学模型 ANN (artificial neural network) BP algorithm GA (genetic algorithm) rolling force prediction mathematic model
  • 相关文献

参考文献8

  • 1Ishii T, Wada S, Miyokawa M, et al. Recent technology in hot strip mill [ C ] //Proceedings of the 7th International Conference on Steel Rolling. Tokyo: The Iiron and Steel Institute of Japan, 1998 : 711 - 716.
  • 2Kumpati S N, Kannan P. Identification and control of dynamical systems using neural networks[J ]. IEEE Trans on Neural Networks, 1990,1( 1 ) :20 - 27.
  • 3Nicklus F P, Dieter L, Gunter S, et al. Application of neural networks in rolling mill automation[J ]. Iron and Steel Engineer, 1995,72(2):33-36.
  • 4Lu Y Z. Meeling the challenge of intelligent system technologies in the iron and steel industry [J ]. Iron and Steel Engineer, 1996,73(9) : 139 - 149.
  • 5Draeger A, Engell S, Ranke H, Model predictive control using neural networks[J]. IEEE Control Systems, 1995,15 (5) :61 -66.
  • 6Zhang Y, Sen P, Hearn G E. An on-line trained adaptive neural controller[J]. IEEE Control Systems, 1995, 15(5): 67-75.
  • 7Simens A G. Intelligent answer to HSM control problems[J]. Steel Times International, 1996,20( 1 ) : 16 - 17.
  • 8王军生,赵启林,矫志杰,刘相华.冷连轧过程控制变形抗力模型的自适应学习[J].东北大学学报(自然科学版),2004,25(10):973-976. 被引量:12

二级参考文献11

  • 1余四清,贺毓辛,顾卓,胡哲泰,胡俊,王德仁.多种负荷均衡分配法[J].钢铁,1996,31(7):48-51. 被引量:14
  • 2杨节.轧制过程数学模型[M].北京:冶金工业出版社,1993..
  • 3Lin, Charlie C, Atkinson Y, et al. New rolling force modification equation for the bland and ford cold rolling model[A]. International Symposium on Information Storage and Processing Systems[C]. New York: American Society of Mechanical Engineers, 1996.355
  • 4Larkiola J, Myllykoski P, Nylander J. Prediction of rolling force in cold rolling by using physical models and neural computing [J]. Journal of Materials Processing Technology, 1996,60(6):381-386.
  • 5Yoshikazu. Modernization of gauge control system at Sumitomo Wakayama 5-stand cold mill[J]. Iron and Steel Engineer, 1999,8:46-50.
  • 6Venkata Reddy N, Suryanarayana G. A set-up model for tandem cold rolling mills[J]. Journal of Materials Processing Technology, 2001,116(10):269-277.
  • 7Wang D D, Tieu A K, Lu C, et al. Modeling and optimization of threading process for shape control in tandem cold rolling[J]. Journal of Materials Processing Technology, 2003,140(9):562-568 .
  • 8Bryant. Automation of tandem mill[M]. London: The Metals Society Press, 1973.132-136.
  • 9Sungzoon C, Min J, Sungcheol Y. A hybrid neural-network/mathematical prediction model for tandem cold mill[J]. Computers & Industrial Engineering, 1997,33(12):453-456.
  • 10Makoto F. Advanced set-up and control system for dofascos tandem cold mill[J]. IEEE, 1994,3(30):2005-2012.

共引文献11

同被引文献70

引证文献6

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部