期刊文献+

基于RBFNN建模的动态流量软测量方法研究 被引量:7

RBFNN modeling based dynamical flow soft sensing method
在线阅读 下载PDF
导出
摘要 本文通过对粘性流体在圆管中的层流和湍流流量方程对比研究发现,动态流量主要与管道中摩擦导致的压头损失、管道中最大的流速、流体温度变化有关,依据这一原理设计了基于径向基函数人工神经网络(RBFNN)的软测量模型。在伺服阀动态性能实验台上构建了数据采集系统,在新型动态流量测量管上安装超声波、压差、温度传感器来采集各种信息,其中流速信息采用一种新颖的超声波类时差法获取,用于标定的实际流量南无载液压缸的速度传感器获取。基于NeuroSolution软件中的RBF网络模块组成软测量RBFNN,选用部分采集数据作为学习样本对RBFNN进行训练,建立了动态流量的软测量模型。利用采集的数据的测试样本对RBFNN进行测试,通过流量预测曲线和实际曲线的对比,验证了该软测量模型具有很高的逼近精度。该软测量方法为动态流量的测量提供了一条新的途径。 By comparing the laminar flow and the turbulent flow of viscous fluid in circular pipe, it is found that the dynamic flow is mainly related to the head loss caused by the friction, the largest flow rate and the fluid temperature. According to this principle, a soft sensor model based on the radial basis function neural network (RBFNN) is designed. A data acquisition system is built on the dynamic performance test-bed of servo valve. The ultrasonic, pressure and temperature sensors have been installed on the new dynamic flow measuring pipe to collect relevant informa- tion. The flow rate is measured by use of a new ultrasonic time difference-like method. The actual flow for the calibration is gained from the speed sensor on the no-load hydraulic cylinder. The soft sensing RBFNN has been constructed by use of the RBF network module of the NeuroSolution software. The RBFNN trained by use of learning samples from the collected data. In this way, the soft sensing model for dynamic flow testing has been established. The RBFNN has been tested by use of testing samples from the collected data. By comparing the flow predicting curve and the actual flow curve, it shows that the soft sensing model has a high approximating precision. The soft sensing method provides a new way for dynamic flow measuring.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2008年第9期1888-1893,共6页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(60374042)资助项目
关键词 软测量 动态流量 RBF神经网络 超声波检测 类时差法 soft sensor dynamic flow RBF neural network ultrasonic detection time difference-like method
  • 相关文献

参考文献9

二级参考文献39

  • 1李向阳,朱学峰,刘焕彬.间歇制浆蒸煮过程的混合建模方法研究[J].中国造纸学报,2001,16(2):24-28. 被引量:9
  • 2康正九,胡保生.基于逆QR分解的RELS参数估计及其并行实现[J].控制与决策,1996,11(1):16-21. 被引量:2
  • 3焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1995..
  • 4焦李成,神经网络系统理论,1995年,34页
  • 5J. Platt. A Resource-allocating Network for Function Interpolation. Neural Computation, 1991,3(2): 213~ 225.
  • 6Yi Liao,Shu-Cherng Fang, Henry L.W.Nuttle.Relaxed conditions for radial-basis function networks to be universal approximators.Neural Networks ,2003,16(7):1019~1028.
  • 7Chen S., Billing S. A. and Grant P. M.. Recursive Hybrid Algorithm for Nonlinear Identification Using Radial Basis Function Networks. International Journal of Control, 1999,55(5):1051~1070.
  • 8Burger M,Neubauer A.Error bounds for approximation with neural networks [J].Journal of Approximate Theory,2001,112(2):235-250.
  • 9Xin Li.On simultaneous approximations by radial basis function neural networks [J].Applied Mathematics and Computation,1998,95(1):75-89.
  • 10Krzyzak A,Linder T,Lugosi C.Nonparametric estimation and classification using radial basis function nets and empirical risk minimization [J].IEEE Trans.on Neural Networks,1996,7(2):475-487.

共引文献20

同被引文献97

引证文献7

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部