期刊文献+

基于小波神经网络的水轮机叶片裂纹源的定位技术 被引量:4

Source Location of Cracks of Turbine Blades Based on Wavelet Neural Network
在线阅读 下载PDF
导出
摘要 针对水轮机结构复杂等特点,传统的时差定位及模态定位方法不能满足其裂纹水轮机叶片定位要求,提出利用小波神经网络对水轮机转轮叶片的裂纹进行定位.训练采用标度共轭梯度算法(SCG),并对输出结果采用竞争处理方式.结果表明,与BP网络相比,小波神经网络提高了定位的准确度,所确定的裂纹位置最大误差仅为4.2%,是一种适合复杂结构的定位方法. Turbine runner has a complex structure. The traditional source location methods, such as time of arrival and modal analysis, can not satisfy the accuracy. This paper described source location of cracks of turbine blades using a wavelet neural network (WNN). The scaled conjugate gradient algorithm (SCGA) was used in the training iteration. The outputs were dealt with competing mode. The results show that the WNN can improve the accuracy of location compared with BP neural network, which indicates the WNN algorithm is a suitable source location method for complex structures.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2008年第8期1301-1304,1309,共5页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金资助项目(50465002)
关键词 小波神经网络 标度共轭梯度算法 源定位 声发射 wavelet neural network (WNN) scaled conjugate gradient algorithm (SCGA) source location acoustic emission
  • 相关文献

参考文献10

  • 1沈功田,耿荣生,刘时风.声发射源定位技术[J].无损检测,2002,24(3):114-117. 被引量:105
  • 2Axinte D A, Natarajan D R, Gindy N N Z. An approach to use an array of three acoustic emission sensors to locate uneven events in machining-Part 1: method and validation [J]. International Journal of Machine Tools and Manufacture, 2005, 45(14): 1605 -1613.
  • 3Nivesrangsan P, Steel J A, Reuben R L. Source location of acoustic emission in diesel engines[J]. Mechanical Systems and Signal Processing, 2007, 21 (2) : 1103-1114.
  • 4耿荣生,沈功田,刘时风.模态声发射基本理论[J].无损检测,2002,24(7):302-306. 被引量:44
  • 5Tian Y, Lewin P L, Davies A E, et al. PD pattern identification using acoustic emission measurement and neural networks[J]. IEE Conference Publication, 1999(5) :541 -543.
  • 6Kirikera G R, Shinde V, Schulz M J, etal. Damage localisation in composite and metallic structures using a structural neural system and simulated acoustic emissions[J]. Mechanical Systems and Signal Processing, 2007, 21(]): 280-297.
  • 7Kosel T, Grabec I, Kosel F. Intelligent location of two simultaneously active acoustic emission sources [J]. Aerospace Science and Technology, 2005, 9(1): 45-53.
  • 8Moiler M F. A scaled conjugate gradient algorithm for fast supervised learning [J]. Neural Networks, 1993, 6: 525-533.
  • 9顾四行.水轮机转轮裂纹及其处理[J].水电站机电技术,1992(3):1-7. 被引量:11
  • 10ASTM E976-99, Standard guild for determining the reproducibility of acoustic emission sensor response [S].

二级参考文献7

共引文献149

同被引文献63

引证文献4

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部