期刊文献+

基于运动矢量分析的动作识别技术

The Action Recognition Technology Based on Motion Vector Analysis
在线阅读 下载PDF
导出
摘要 改进人体行为识别传统模板匹配方法的算法,提出一种基于运动矢量分析动作识别技术,并对其识别效果进行实验验证。该技术把标准人体动作的百分比运动矢量作为模板,将待识别动作的百分比运动矢量与已知的模板进行对比,从而得到动作识别结果。该技术可以正确识别摆头、点头和摇头动作,动作重复3次的识别率可以达到95%以上。该技术进行实时动作识别具有效果好、算法简单、识别速度快、抗干扰性强等优点。 A technology of the motion-recognition based on motion vector analysis was proposed by improving the algorithms of human behavior recognition of traditional methods of template matching. The recognition effect of this technology was verified by experiments. The technology uses the percentage of vector of standards body motion as a template. Recognition action will be to identify by comparing the percentage of vector and the known template. The technology can correctly recognize shaking head, shaking head and nod. If recognition action can be repeated three times,the recognition rate of this action will be more than 95 percent. During conduting real time action, the advantages of this technology is effective identification, simple algorithm, fast recognition and strong anti-jamming.
出处 《广西科学院学报》 2008年第3期256-259,共4页 Journal of Guangxi Academy of Sciences
关键词 动作 识别 矢量 分析 action recognition, vector, analysis
  • 相关文献

参考文献13

  • 1王亮,胡卫明,谭铁牛.人运动的视觉分析综述[J].计算机学报,2002,25(3):225-237. 被引量:277
  • 2Bobick A,Davis J. Real-time recognition of activity using temporal templates: proe IEEE Workshop on Application of computer Vision, Sarasota[C]. Florida:[s. n. ],1996:39-42.
  • 3Davis J ,Bobick A. The representation and recognition of action using temporal templates[R]. MIT Media lab, Perceptual Computing Group: Technical Report 402, 1997.
  • 4Polans R,Nelson R. Low level recognition of human motion: proc IEEE Workshop on Motion of Non-Rigid and Articulated Objects[C]. Austin ..TX, 1994 : 77-82.
  • 5赵国英,李振波,邓宇,李华.基于检索的人体运动识别和模拟[J].计算机研究与发展,2006,43(2):368-374. 被引量:10
  • 6雷蕾,李言俊,张科.图像目标质心快速搜索算法[J].红外技术,2007,29(9):548-551. 被引量:11
  • 7Cui Y, Weng J. Hand segmentation using learning based prediction and verification for hand sign recognition: proc IEEE Conference on computer Vision and pattern Recognition[C]. Puerto Rico: IEEE Computer Society Press, 1997 : 88-93.
  • 8Rabinier L. Atutorial on hidden Markov models and selected applications in speech recognition[J]. Proceeding of the IEEE, 1989,77 (2) : 257-285.
  • 9Starner T,Pantland A. Real-time American sign language recognition from video using hidden Markov models: proc International Symposium on Computer Vision, Coral Cables [C]. Florida: IEEE Computer Society Press, 1995 : 265- 270.
  • 10Yamato J,Ohya J, Ishii K. Recognizing human action in time-sequential image using hidden Markov model: proc IEEE Conference on Computer Vision and Pattern Recognition[C]. Champaign : IEEE Computer Society Press, 1992 : 379-385.

二级参考文献121

  • 1陈睿,刘国翌,赵国英,张俊,李华.基于序列蒙特卡罗方法的3D人体运动跟踪[J].计算机辅助设计与图形学学报,2005,17(1):85-92. 被引量:21
  • 2陈睿,邓宇,向世明,李华.结合强度和边界信息的非参数前景/背景分割方法[J].计算机辅助设计与图形学学报,2005,17(6):1278-1284. 被引量:13
  • 3刘纯胜,孙家宪,赵剡,许东.基于泰勒级数展开的图像质心和角度偏移识别算法[J].光学仪器,2006,28(3):42-45. 被引量:5
  • 4[25]Kohle M, Merkl D, Kastner J. Clinical gait analysis by neural networks: Issues and experiences. In: Proc IEEE Symposium on Computer-Based Medical Systems, Maribor, Slovenia, 1997. 138-143
  • 5[26]Meyer D, Denzler J, Niemann H. Model based extraction of articulated objects in image sequences for gait analysis. In: Proc IEEE International Conference on Image Processing, Santa Barbara, California 1997. 78-81
  • 6[27]McKenna S et al. Tracking groups of people. Computer Vision and Image Understanding, 2000, 80(1):42-56
  • 7[28]Karmann K, Brandt A. Moving object recognition using an adaptive background memory. In: Cappellini V ed. Time-varying Image Processing and Moving Object Recognition. 2. Elsevier, Amsterdam, The Netherlands, 1990
  • 8[29]Kilger M. A shadow handler in a video-based real-time traffic monitoring system. In: Proc IEEE Workshop on Applications of Computer Vision, Palm Springs, CA, 1992.1060-1066
  • 9[30]Stauffer C, Grimson W. Adaptive background mixture models for real-time tracking. In: Proc IEEE Conference on Computer Vision and Pattern Recognition, Fort Collins, Colorado, 1999, 2:246-252
  • 10[31]Wren C, Azarbayejani A, Darrell T, Pentland A. Pfinder: Real-time tracking of the human body. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(7):780-785

共引文献295

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部