摘要
研究Galois FCSR状态序列的周期与互补性质及进位序列的互补性质。根据周期序列与有理数2-adic表达之间的关系,证明l-序列的状态序列是准周期的,且其周期与l-序列的周期相同。分析以q为极小连接数的l-序列a的状态序列s=(s0,s1,…,sn)及进位序列c=(c0,c1,…,cn),证明若s在t时刻进入周期,则i≥t时,si+si+T/2=∑j=0^r-12^j,ci+ci+T/2=q-∑j=0^r-12^j,其中,T=per(a),r=[1b(q+1)]。
This paper investigates the period and complementarity property of Galois FCSR state-sequence, and the complementarity proterty of carry-sequence as well. By analyzing the relationship between a periodic sequence and the 2-adic expansion of a rational number, it is proved that the state-sequence of an l-sequence is eventually periodic and has the same period as that of the l-sequence. It analyzes an l-sequence a with minimum connection integer q, state-sequence s=(s0, s1,…, sn) and carry-sequence c=(c0, c1,…, cn), and proves that si+si+T/2=∑j=0^r-12^j,ci+ci+T/2=q-∑j=0^r-12^j for i≥t, where T= per(a), r = [1b(q+1)], and t is the time after which s is strictly periodic.
出处
《计算机工程》
CAS
CSCD
北大核心
2008年第18期179-180,183,共3页
Computer Engineering
基金
国家自然科学基金资助项目(60673081)
国家"863"计划基金资助项目(2006AA01Z417)
关键词
同期互补序列
状态序列
进位序列
periodic complementary sequence
state-sequence
carry-sequence