期刊文献+

Galois FCSR的内部状态分析 被引量:2

Inner State Analysis of Galois FCSR
在线阅读 下载PDF
导出
摘要 研究Galois FCSR状态序列的周期与互补性质及进位序列的互补性质。根据周期序列与有理数2-adic表达之间的关系,证明l-序列的状态序列是准周期的,且其周期与l-序列的周期相同。分析以q为极小连接数的l-序列a的状态序列s=(s0,s1,…,sn)及进位序列c=(c0,c1,…,cn),证明若s在t时刻进入周期,则i≥t时,si+si+T/2=∑j=0^r-12^j,ci+ci+T/2=q-∑j=0^r-12^j,其中,T=per(a),r=[1b(q+1)]。 This paper investigates the period and complementarity property of Galois FCSR state-sequence, and the complementarity proterty of carry-sequence as well. By analyzing the relationship between a periodic sequence and the 2-adic expansion of a rational number, it is proved that the state-sequence of an l-sequence is eventually periodic and has the same period as that of the l-sequence. It analyzes an l-sequence a with minimum connection integer q, state-sequence s=(s0, s1,…, sn) and carry-sequence c=(c0, c1,…, cn), and proves that si+si+T/2=∑j=0^r-12^j,ci+ci+T/2=q-∑j=0^r-12^j for i≥t, where T= per(a), r = [1b(q+1)], and t is the time after which s is strictly periodic.
作者 薛帅 戚文峰
出处 《计算机工程》 CAS CSCD 北大核心 2008年第18期179-180,183,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60673081) 国家"863"计划基金资助项目(2006AA01Z417)
关键词 同期互补序列 状态序列 进位序列 periodic complementary sequence state-sequence carry-sequence
  • 相关文献

参考文献6

  • 1Goresky M, Klapper A. 2-adic Shift Registers[C]//Proc. of Cambridge Security Workshop on Fast Software Encryption. Cambridge, England: [s. n.], 1994.
  • 2Arnault F, Berger T E Design and Properties of a New Pseudorandom Generator Based on a Filtered FCSR Automaton[J]. IEEE Trans. on Computers, 2005, 54(10): 1374-1383.
  • 3Qi Wenfeng, Xu Hong. Partial Period Distribution of FCSR Sequences[J]. IEEE Trans. on Inform. Theory, 2003, 49(3):761-765.
  • 4Xu Hong, Qi Wenfeng, Autocorrelations of Maximum Period FCSR Sequences[J]. SIAM Journal on Discrete Mathematics, 2006, 20(3): 568-577.
  • 5Goresky M, Klapper A. Fibonacci and Galois Representation of Feedback-with-carry Shift Registers[J]. IEEE Trans. on Inform. Theory, 2002, 48(10): 2826-2836.
  • 6Klapper A, Goresky M. Feedback Shift Registers, 2-adic Span, and Combiners with Memory[J]. J. Cryptology, 1997, 10(1): 111-147.

同被引文献23

  • 1曾祥勇,程池,胡磊,刘合国.一类相互正交的零相关区序列集的构造[J].电子与信息学报,2006,28(12):2347-2350. 被引量:6
  • 2Chen H H, Chiu H W. Generation of Perfect Orthogonal Comple- mentary Codes for Their Applications in Interference-free CDMA Systems[C] //Proc. of the 15th International Symposium on PIMRC.[S. l.] : IEEE Press, 2004: 734-738.
  • 3Chen H H, Yeh Y C, Zhang Xi, et al. Generalized Pairwise Complementary Codes with Set-wise Uniform Interference-free Windows[J].IEEE Journal on Selected Areas in Communications.2006, 24(1):65-73.
  • 4Chen H H, Chiu H W. Design of Perfect Complementary Codes to Implement Interference-free CDMA Systems[C] //Proc. of IEEE GLOBECOM’04. Dallas, Texas, USA:[s. n.] , 2004: 1096-1100.
  • 5Magana M E, Rajatasereekul T, Hank D, et al. Design of an MC-CDMA System That Uses Complete Complementary Orthogonal Spreading Codes[J].IEEE Transactions on Vehicular Technology.2007, 56(5):2976-2989.
  • 6Chen H H, Chiu H W, Guizani M. Orthogonal Complementary Codes for Interference-free CDMA Technologies[J]. IEEE Wireless Communications, 2006, 13(1): 68-79.
  • 7Li Jing, Huang Aiping, Chen H H, et al. Intergroup Complemen- tary Codes for Interference-resist CDMA Wireless Communica- tions[J].IEEE Transaction on Wireless Communication.2008, 7(1):166-174.
  • 8KLAPPER A, GORESKY M. 2-aidc shift registers [ C ]//Fast Software Encryption, LNCS 809. New York: Springer, 1993:174 -178.
  • 9GORESKY M, KLAPPER A. Arithmetic cross-correlations of feed- back with carry shift register sequences [ J]. IEEE Transactions on Information Theory, 1997, 43(4) : 1342 - 1345.
  • 10FISCHER S, MEIER W, STEGEMANN D. Equivalent representa- tions of the F-FCSR keystream generator [ EB/OL]. [ 2012 - 03 - 0l ]. http://www, eerypt, eu. org/stvl/sase2008/.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部