期刊文献+

人工智能方法在旅游预测中的应用及评析 被引量:31

On the Application of Artificial Intelligence Methods in Tourism Forecast and Its Comment and Analysis
在线阅读 下载PDF
导出
摘要 20世纪90年代之前,对旅游需求预测一般采用传统的定量分析方法,而近20年来,诸如粗糙集、遗传算法、模糊时间序列、灰色理论、神经网络模型、支持向量机等人工智能方法也被引入到旅游需求预测的研究之中。然而,国内外学者尚未对人工智能方法在旅游需求预测中的应用进行系统的整理与论述。为此,本文简要介绍了人工智能在旅游预测中的应用,并与传统的计量方法、时间序列方法进行了比较。同时,简略评述了其优缺点和发展趋势。 Prior to 1990s, traditional quantitative analysis method was generally applied in tourism forecast for demand. But in the past twenty years, such artificial intelligence methods as rough sets, genetic algorithms, fuzzy time series, grey theory, artificial neural networks and vector machines have been introduced into the study of tourism forecast. However, scholars both at home and abroad have not had any systematic comment on it. Accordingly, the paper tries to give a brief introduction to the application of artificial intelligence method in tourism forecast and compare it with the traditional measuring method and time series method. Meanwhile, its strong and weak points as well as developing trend are briefly commented.
出处 《旅游学刊》 CSSCI 北大核心 2008年第9期17-22,共6页 Tourism Tribune
关键词 人工智能方法 旅游预测 应用 评析 artificial intelligence method tourism forecast application comment and analysis
  • 相关文献

参考文献37

  • 1Li G, Song H, Witt S. Time varying parameter and fixed parameter linear AIDS: An application to tourism demand forecasting [ J ] International Journal of Forecasting, 2006,22:57 - 71.
  • 2Crouch G I. The study of international tourism demand: A review of practice[J] . Journal of Travel Research, 1994,33 : 41 - 54.
  • 3Lim C. Review of international tourism demand models[J]. Annals of Tourism Research, 1997a, 24:835 - 849.
  • 4Lim C. An econometric classification and review of international tourism demand models[J]. Tourism Economics, 1997b, 3:69 - 81.
  • 5Lim C. A meta analysis review of international tourism demand[J]. Journal of Travel Research, 1999,37:273 - 284.
  • 6Witt S F, Witt C A. Forecasting tourism demand: A review of empirical research [ J ]. International Journal of Forecasting, 1995,11:447 - 475.
  • 7Li G, Song H, Witt S F. Recent developments in econometric modeling and forecasting [ J ]. Journal of Travel Research, 2005,44 : 82 - 99.
  • 8Haiyan Song, Gang Li. Tourism demand modelling and forecasting-A review of recent research[ J]. Tourism Management, 2007,9 : 27 - 33.
  • 9覃频频,陆凯平,牙韩高.旅游需求预测模型研究[J].铁道运输与经济,2006,28(8):73-75. 被引量:7
  • 10任来玲,刘朝明.旅游需求预测方法文献述评[J].旅游学刊,2006,21(8):90-92. 被引量:35

二级参考文献23

  • 1张文彤.SPSS11统计分析教程高级篇[M].北京:北京希望电子出版社,2002..
  • 2楼顺天 于卫.基于MATLAB的系统分析与设计[M].西安电子科技大学出版社,2000..
  • 3Gaynor, P.E., & Kirkpatrick, R.C..Introduction to time-series modeling and forecasting in business and economics[M]. New York : McGraw-Hill, 1994
  • 4Box, G.E.P, Jenkins, G.M, & Reinsel,G.C..Time series analysis, forecasting and controlo Englewood Cliffs[M]. NJ:Prentice-Hall, 1994.
  • 5Elamn, J.L.. Finding structure in time[J].Cognit-itive Science, 1990, (14):179-211.
  • 6Wang Chao-Hung. Predicting tourism demand using fuzzy time series and hybrid grey theory[J]. Tourism Management, 2004, 25:367- 374.
  • 7Witt Stephen F, Witt Christine A. Forecasting tourism demand: A review of empirical research[J]. International Journal of Forecasting,1995, 11:447-475.
  • 8Qu Hailin, Lain Sophia. A travel demand model for Mainland Chinese tourists to Hong Kong[J]. Tourism Management, 1997, 18(8) :593 - 597.
  • 9Cho Vincent. A comparison of three different approaches to tourism arrival forecasting[J]. Tourism Management, 2003, 24, 323 - 330.
  • 10Stucka Tihomir. A comparison of two econometric models( OLS and SUB) for forecasting Croatian tourism arrivals(Working Paper)[Z].

共引文献105

同被引文献282

引证文献31

二级引证文献765

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部