期刊文献+

基于计算机视觉和神经网络的芒果检测与等级分类 被引量:22

Mango Examination and Rank Classification Research Based on Computer Vision and Neural Network
在线阅读 下载PDF
导出
摘要 为了提高芒果检测与分类的准确率和效率,综合运用计算机视觉技术和BP神经网络技术,实现对芒果损伤的检测与分类。首先,通过计算机视觉系统获取芒果图像,利用图像处理去除噪声、图像分割和图像增强等多种基本图像处理的方法,对芒果损伤图像进行处理;其次,对芒果图像进行了特征分析,提取9个特征参数,将这9个特征参数作为输入,建立BP神经网络模型,对芒果进行分类。试验结果表明,模型对芒果识别的准确率达85.5%。 In order to enhance the mango examination and the classification of accuracy and the efficiency, the system synthesis utilized computer vision technology, the BP artificial neural networks technology to realize the mango's damage detection and the classification. First, through the computer vision system gaining mango image, using the image processing elimination noise, the image segment, the image intensification and so on many kinds of basic image processing method carries on processing to the mango image. Secondly, we carried on the characteristic analysis to the mango image and picked up 9 characteristic parameters. Using these 9 characteristic parameters as the input, we established the BP neural network model, carried on the classification to mango's damage. The test result indicated the model to the mango recognition accurate rate has reached 85.5%.
出处 《农机化研究》 北大核心 2008年第10期57-60,共4页 Journal of Agricultural Mechanization Research
基金 广西研究生教育创新计划项目(2007105960811M24)
关键词 计算机视觉 芒果 检测 BP神经网络 computer vision mango detection BP neural network
  • 相关文献

参考文献5

  • 1何东健,杨青,薛少平,耿楠.用人工神经网络进行果实颜色分级技术研究[J].西北农业大学学报,1998,26(6):109-112. 被引量:26
  • 2Kavdir. Apple sorting using artificial neural networks and spectral imaging[ J]. American Society of Agricultural Engineers,2002, 45(6) : 1995 -2005.
  • 3P Yimyam, T Chalidabhongse, P Sirisomboon, et al. Physical properties analysis of mango using computer vision[ C ]// Proceeding of International Conference on Control, Automation and Systems( ICCAS' 05). Korea :[出版者不祥],2005.
  • 4中华人民共和国农业部.NY/T492-2002中华人民共和国农业行业标准芒果[S].北京:中华人民共和国农业部,2002.
  • 5王树文,张长利,房俊龙.基于计算机视觉的番茄损伤自动检测与分类研究[J].农业工程学报,2005,21(8):98-101. 被引量:32

二级参考文献16

共引文献56

同被引文献209

引证文献22

二级引证文献177

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部