期刊文献+

求多项式方程全部实根的混合差分进化算法 被引量:1

A Mixed Differential Evolution Algorithm for Solving All Real Roots of Polynomial Equation
在线阅读 下载PDF
导出
摘要 针对多项式方程求实根问题,提出了一种混合差分进化算法。在该算法中,先对标准差分进化算法进行了一些改进,对计算种群个体的适应度并排序,利用二分之一规则选取个体,并引入自适应变异算子和进化策略重组算子,用改进的差分进化算法对种群进行优化,然后引入模拟退火算法和小生境技术对生成的新个体进一步优化。通过典型算例的数值仿真表明,文中提出的算法克服了标准差分进化算法易陷入局部极优等缺点,可以求任意高次多项式方程的全部实根,而且求解效率高,是一种求解多项式方程全部实根的有效算法。 Aiming at solving real roots of polynomial equation, a mixed differential evolution algorithm is put forward. In this algorithm, standard differential evolution algorithm is modified. Computing the fitness of each individual, the new individuals are chosen by the first - two rule, and self - adaptive mutation of differential evolution and reorganization of evolution strategies are introduced. The modified differential evolution algorithm is used to optimize the population individual, and then using the Simulated Annealing Algorithms and Niche to optimize the new individuals. The simulations based on benchmarks confirm that this algorithm can overcome some defects of standard differential evolution algorithm and it can not only apply any high order polynomial equation, but has high efficiency. It is a successful approach for finding all real roots of polynomial equation.
出处 《计算机仿真》 CSCD 2008年第8期169-173,共5页 Computer Simulation
基金 国家自然科学基金(60461001) 广西自然科学基金(0542048) 广西民族大学研究生教育创新计划项目(gxun-chx0750)
关键词 多项式方程 实根 差分进化 模拟退火 小生境 Polynomial equation Real root Differential evolution algorithm Simulated annealing algorithm Niche
  • 相关文献

参考文献8

二级参考文献35

  • 1[1]William H P, Saul A T, William T V, et al. Numerical Recipes in Fortran, 2nd ed. New York: Cambridge Univ Press, 1992
  • 2[2]Lang M, Frenzel B C. Polynomial root finding. IEEE Signal Processing Letters, 1994, 1(10): 141~143
  • 3[3]Van Oorschot P C, Vanstone S A. A geometric approach to root finding in GF(qm). IEEE Trans Information Theory, 1989, 35(2): 444~453
  • 4[4]Aliphas A, Narayan S S, Peterson A M. Finding the zeros of linear phase FIR frequency sampling filters. IEEE Trans Acoust, Speech Signal Processing, 1983, 31: 729~734
  • 5[5]Schmidt C E, Rabiner L R. A study of techniques for finding the zeros of linear phase FIR digital filters. IEEE Trans Acoust, Speech Signal Processing, 1977, 25: 96~98
  • 6[6]Steiglitz K, Dickinson B. Phase unwrapping by factorization. IEEE Trans Acoust, Speech Signal Processing, 1982, 30: 984~991
  • 7[7]Baldi P F, Hornik K. Learning in linear neural networks: A survey. IEEE Trans on Neural Networks, 1995, 6(4): 837~858
  • 8[8]Huang D S. Systemic Theory of Neural Networks for Pattern Recognition. Publishing House of Electronics Industry, 1996
  • 9[9]Huang D S. Linear feedforward neural network classifiers and reduced-rank approximation. In: 1998 4th ICSP Proceedings. Beijing: Publishing House of Electronics Industry, 1998. 1331~1334
  • 10[10]Hertz J, Krogh A, Palmer R G. Introduction to the theory of neural computation. Reading, MA: Addison-Wesley, 1991

共引文献206

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部