摘要
从基尔霍夫衍射积分公式出发,利用曲线坐标关系和傅里叶变换,然后用数学软件Mathematica求得类圆孔和类圆环夫琅和费衍射的精确解,并绘出几种典型的衍射图样.得出的结果与类圆孔和类圆环模型衍射理论相符,与从复杂的数学推导获得结果相比,能够更加真实、精确、简便地了解多种类圆孔和类圆环的夫琅和费衍射情况,对研究微粒和生物细胞形态学的研究有应用价值.
In this paper, exact solutions of type Fraunhofer diffraction of similar circular hole and similar circular ring are derived in Mathematica software, and several typical diffraction patterns are drawn. Applied curvilinear coordinates relations and Fourier transform are given. The results are in accord with the diffraction theory and the multiple diffraction conditions of similar circular hole and similar circular ring are more accurate, exactly and simply known than the method of complicated mathematic derivation. The paper contributes to the research of particles and biological cytology.
出处
《河南师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2008年第4期80-82,共3页
Journal of Henan Normal University(Natural Science Edition)
基金
973国家重点基础研究发展规划项目(G2000026307)
广西教育厅教育科学规划课题
关键词
基尔霍夫衍射积分公式
傅里叶变换
夫琅和费衍射
类圆孔
类圆环
Fraunhofer diffraction
Fourier transform
Kirchhoff diffraction
similar circular hole
similar circular ring