期刊文献+

FPS游戏中基于HTN的Anytime规划器的研究 被引量:1

Reasearch of HTN-based anytime planner in FPS games
在线阅读 下载PDF
导出
摘要 动态性和实时性电脑游戏世界的两个关键特征。Anytime规划是能够产生满足上述两个特征的行为的规划方法。分层任务网络(Hierarchical Task Network,HTN)是表示分层规划的一种形式,它非常适合于表达电脑游戏中非玩家角色(non-player char-acter,NPC)复杂的目标。以著名的第一人称射击(First-Person Shooter,FPS)游戏虚幻竞技场2004(Unreal Tournament 2004)作为游戏平台,为NPC设计实现了一个基于HTN规划的anytime规划器,并使用遗传算法调整规划目标的优先级。该规划器可以根据环境变化随时中断规划并给出可用的规划结果,同时具有一定的适应性。实验表明它能够使NPC的行为更智能。 Dynamic and .real-time are two key features of computer game worlds.Anytime planning is a method of generating behaviors that meets the demands of these two feature.HTN(Hierarehical Task Networks) is a formalism for representing hierarchical plans. It quite fit to express the complex goals of NPC(non-player character) in computer games.Taking Unreal Tournament 2004 which is a famous first-person shooter computer games as platforms,we design and implement an anytime planner based HTN for NPC and use Genetic Algorithm to adjust the priorities of goals.It allows agent to interrupt its planning process at anytime based on the changes of environment meanwhile return an available plan ,it also has some adaptability.The experiments show that it makes the behaviors of NPC more intelligent.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第21期92-95,108,共5页 Computer Engineering and Applications
基金 国家自然科学基金(the National Natural Science Foundation of China under Grant No.60775046)
关键词 第一人称射击游戏 虚幻竞技场 非玩家角色 分层任务网络 anytime规划 first-person shooter unreal tournament NPC HTN planning anytime planning
  • 相关文献

参考文献14

  • 1Champandard A J.AI game development[M]:Indianapolis:New Riders Press, 2003.
  • 2Alexander Nareyek:AI in Computer Gaines [J].ACM Queue 2004,1 (10) : 58-65.
  • 3王皓 罗文杰 高阳 等.一种基于Agent的智能游戏开发平台及其NPC设计.计算机科学,2007,34(9):66-69.
  • 4Fikes R E,Nilsson N J.STRIPS:a new approach to the application of theorem proving to problem solving[J].Artificial Intelligence, 1971,2 (3-4): 189-208.
  • 5Firby R J.An investigation into reactive planning in complex domains[C]//Proceedings of the Sixth National Conference on Artificial Intelligenee(AAAI-87), 1987:202-206.
  • 6Georgeff M P,Ingrand F F.Decision-making in an embedded reasioning system[C]//Proceedings of the Eleventh International Joint Conference on Artificial Intelligence(IJCAI-89), 1989 : 972-978.
  • 7Zilberstein S.Using anytime algorithms in intelligent systems[J].AI Magazine, 1996, 17(3 ) :73-83.
  • 8Prendinger H,Ishizuka M.APS,a prolog-based anytime planning system[C]//Proceedings 11th International Conference on Applications of Prolog(INAP-98) ,Tokyo,Japan, 1998 : 144-149.
  • 9Nareyek A.Open world planning as SCSP[C]//Papers the AAAI-2000 Workshop on Constraints and AI Planning,Austin,Texas,USA, 2000 : 35-46.
  • 10Likhachev M,Ferguson D,Gordon G,et al.Anytime dynamic A^*: an anytime,replanning algorithm[C]//Proceedings of the International Conference on Automated Planning and Scheduling(ICAPS), June, 2005.

共引文献2

同被引文献15

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部