期刊文献+

解决Job Shop调度问题的遗传算法的实现 被引量:3

Realization of Genetic Algorithms to Solve Job Shop Scheduling Problem
在线阅读 下载PDF
导出
摘要 针对作业车间调度问题的具体特点,给出了利用遗传算法求解Job Shop调度问题的主要构造过程和步骤,并对编码、解码、适应度计算、选择、交叉、变异等遗传操作进行了详细设计.最后用一个6×6的测试例子,对本研究设计的GA算法的求解效果进行了测试,并对测试结果进行了分析. Based on the characteristics in Job Shop Scheduing Problem, this paper offers the main structuring process and procedure to solve Job Shop Scheduling Problem by employing Genetic Algorithms and presents the detailed design of the genetic operations such as coding, decoding, calculation of fitness, selection, crossover, and mutation. Finally a test of the solution of GA with a sample of 6 × 6 is given and the result of the test is analyzed.
作者 林碧 谢明红
出处 《重庆工学院学报(自然科学版)》 2008年第6期73-78,共6页 Journal of Chongqing Institute of Technology
基金 福建省自然科学基金资助项目(E0640007)
关键词 JOB Shop调度 遗传算法 种群规模 交叉率 变异率 Job Shop scheduling genetic algorithms size of population cross rate mutation rate
  • 相关文献

参考文献3

二级参考文献16

  • 1张超勇,饶运清,刘向军,李培根.基于POX交叉的遗传算法求解Job-Shop调度问题[J].中国机械工程,2004,15(23):2149-2153. 被引量:115
  • 2DE JONG K A. An analysis of the behavior of a class of genetic adaptive systems[D]. Michigan: University of Michigan, 1975.
  • 3GOLDBERG D E, DEB K. A comparative analysis of selection schemes used in genetic algorithms[C]//RAWLINS G, ed. Foundations of Genetic Algorithms, Morgan Kaufmann, 1991.
  • 4KACEM I, HAMMADI S, BORNE P. Approach by localization and multiobjective evolutionary optimization for flexible job-shop scheduling problems[J]. IEEE Transactions on Systems, Man. and Cybernetics, Part C, 2002,32(1): 408-419.
  • 5BLAZEWICZ J, FINKE G, HAOPT G. New trends in machine SCHEDULING[J].European Journal of Operational Research, 1988, 37:303-317.
  • 6MONTAZERI M, VAN WASSENHOVE L N. Analyses of scheduling rules for an FMS[J]. Int. J. Prod. Res., 1990,28: 785-802.
  • 7ZHANG H P, GEN M. Multistage-based genetic algorithm for flexible job-shop scheduling problem[J]. Complexity International, 2005, 11 : 223-232.
  • 8MESGHOUNI K, HAMMADI S, BORNE P. Hybrid representation for genetic algorithm to solve flexible job shop scheduling[C]//Proceedings of 15th IMACS, Berlin,Germany, 1997: 433-438.
  • 9MASTROLILLI M, GAMBARDELLA L M. Effective neighbourhood functions for the flexible job shop problem[J].Journal of Schecluling, 2000, 3(1): 3-20.
  • 10ZHU Z W, HEADY R B. Minimizing the sum of earliness/tardiness in multi-machine scheduling: a mixed integer programming approach[J]. Computers & Industrial Engineering, 2000, 38: 297-315.

共引文献113

同被引文献23

  • 1李涛,肖景仲.用单亲遗传算法来实现Job Shop调度问题[J].哈尔滨职业技术学院学报,2008(3):126-127. 被引量:1
  • 2张超勇,饶运清,刘向军,李培根.基于POX交叉的遗传算法求解Job-Shop调度问题[J].中国机械工程,2004,15(23):2149-2153. 被引量:115
  • 3马广英,李平,闻育,杜学艳,于凯.基于极大熵模型的交通出行矩阵解法研究[J].浙江大学学报(工学版),2006,40(10):1778-1782. 被引量:9
  • 4Dixon M P,Rilett L R.Population origin-destination estimation using automatic vehicle identification and volume data[J].Journal of Transportaion Engineering,2005(2):75-82.
  • 5Ehlert A,Bell G H,Grosso S.Optimal traffic counting locations for origin-destination matrix estimation[J].Transportation Research,Part B,2006(4):442-460.
  • 6Du Xue-yan,Li Ping,Ma Guang-ying.A mixed evolutionary algorithm to solve the 0-D matrix estimation problem[J]International Conference on Neural Networks,2005(1):79-83.
  • 7Stathopoulos A,Tsekeris T.Methodology for validating dynamic origin-destination matrix estimation models with implications for advanced traveler ingormation systems[J].Transportation Planning and Technology,2005,28(2):93-112.
  • 8Jiao Licheng,Wang Lei.A novel genetic algorithm based on immunity[J].IEEE Trans,on System,Man,and Cybernetics,Part A:Systems and Humans,2000,30(5):552-561.
  • 9Hunt J E.Cooke D E.Learning using an artificial immune system[J].Jounal of Network and Computer Application.1996,19(4):189-212.
  • 10曹春红,张斌,李文辉.基于牛顿-遗传混合算法的几何约束问题的求解[J].系统仿真学报,2007,19(16):3650-3652. 被引量:6

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部